
8-BIT MICROPROCESSING UNIT (MPU)

The MC6800 is a monolithic 8-bit microprocessor forming the central
control function for Motorola’s M68~ family. Compatible with TTL, the
MC6B~, as with all M6800 system parts, requires only one + 5.O-volt
power supply, and no external TTL devices for bus interface.

The MC6800 is capable of addressing 64K bytes of memory with its
16-bit address lines. The 8-bit data bus is bidirectional as well as three-
state, making direct memory addressing and multiprocessing applica-
tions realizable.

● 8-Bit Parallel Processing

● Bidirectional Data Bus

. 16-Bit Address Bus – WK Bytes of Addressing

● 72 Instructions – Variable Length

. Seven Addressing Modes – Direct, Relative, Immediate, Indexed,
Extended, Implied and Accumulator

● Variable Length Stack
,>:

,,*!.
“)!.IC,[

. Vectored Restart ‘.*$.}.,,2:+.(~

. Maskable Interrupt Vector ‘~”‘%1*F.

. Separate Non-Maskable Interrupt – Internal Registers Saved i#’’::$$
~..!’.

Stack
, ~,,)i~. ,{)..Y,:>,+,-,,,..,,,!,.........

*: ,.. ‘is
. Six Internal Registers – Two Accumulators, Index Regist~#?Y’:Y’

Program Counter, Stack Pointer and Condition Code Re~@te~

● Direct Memory Addressing (D MA) and Multiple P~@$esso’r
Capability .,>s,-..:;.!,.,, ...+,“,.,

● Simplified Clocking Characteristics *V\>>>.,,**.,1’.-‘ -->,,:+~..,
‘~:?iii*...*”,+<

. Clock Rates as High as 2.0 MHz
,,:+,..,‘.~;:),t.{t,.*:;.> ,~>

● Simple Bus Interface Without TTL ,$~~~~i$~’

● Halt and Single Instruction Executlo*k$~~$bility
,.*. .\~~$$~‘;:$*Y*:,F

...., .it~
,.,.$,.>.‘i,\,.*>

& ‘~~$..,.,{,
,:&f*,>~<~’

,>$ $$:$.~~.... ~:~+~,*:,.:~’‘,*.. .+
\,\<\!;..., \.J.*.+,t~

,,,~~&Y@’DERING INFORMATION..
w<, .-1. $,)

PackageType ‘$:,~~equency (MHz) Temperature Order Number
ceramic+,,:,~f~ “ 1.0 Ooc to 70°c MC6800L

L s~~i~ ~ “ 1.0 –40°C to 85°C MC~~CL

@y*+(k::: 2.0Ti. , Ooc to 70°c I MC68BOOL
~rdio 1.0 O“c to 70°c MC68WS.—

!–!–

s suffix 1.0 –40°C to 85°C MC@WCS
1.5 O“c to 70°c Mc68Ams
1.5 –40°C to 85°C Mc68Amcs
2.0 O“c to 70°c MC68BOOS

Plastic 1.0 O“c to 70°c MC6800P
P Suffix 1.0 –40°C to 85°C MC6800C P

1.5 O“c to 70°c MC68AOOP

1.5 – 40°C to 85°C MC68AOOCP

2.0 Ooc to 70°c MC68BOOP

MCWOO

I
i

I

SUFFIX
uu. -

CERAMIC PACKAGE
CASE 715

PIN ASSIGNMENT

Vss[10 ~ JRESET

HALT[2 39]TSC

@l [3 38]N. C.

KQ [4 37 342

VMA [5 36]DBE

m[6 35]N, C.

BA [7 34]Rl~

Vccc 8 33] DO

AC [9 32]Dl

Al [10 31] D2

A2 [11 30] D3

A3[12 29] D4

A4[13 28] D5

A5 [14 27] D6

A6 [15 26] D7

A7 [16 25]A15

A8 [17 24]A14

A9 [16 23 JA13

A1O c 19 22]A12

Al 1q 20 21 Jvss

MOTOROLA INC., lW DS9471-F

—— -——— -—

MAXIMUM RATINGS

M C6~C MC68A~C I I -40to +85 I I

Storage Temperature Range I Tsta l-55to +150 I “C I

THERMAL RESISTANCE

Rating Symbol Value Unit

Plastic Package Im
Cerdip Package eJ A 60 “Clw
Ceramic Packaqe m

POWER CONSIDERATIONS

The average chip-junction temperature, TJ, in ‘C can be obtained from:

TJ=TA+(PDo OJA)

Where:

TA = Ambient Temperature, ‘C

This device contains circuitry to protect the
inputs against damage due to high static

voltages or electrical fields; however, it is ad-
vised that normal precautions be taken to

avoid application of any voltage higher than
maximum-rated voltages to this high-

impedance circuit. Reliability of operation is

(1)

OJA= Package Thermal Resistance, Junction-to-Ambient, “C/W ;F’s~;
,.,\\wy\~.::$,i~

PD=PINT+PpORT
.,$ ‘f:?ki,,, ,,$3

~..,..,..::i~.’.~i.:.,.
PINT= ICC x Vcc, Watts – Chip Internal Power

.<,,..,,
1*+:,..,.,+*

PpORT = Port Power Dissipation, Watts – User Determin@:$,,,. ,.,. ...,.
For most applications PPORT< PINT and can be neglected. P$o~~ may become significant if the device is configured to

drive Darlington bases or sink LED loads. %i*\:,+,:,,,**F
..,,,.,,\+,*

An approximate relationship between PD and TJ (if PpO~~$YWbglected) is:
,.>,,,.

PD= K- (TJ+2730C) ~,:* (2).,J:>
Solving equations 1 and 2 for K gives: ,J,t::i,}.,(*;{:\

K= PD. (TA+2730C)+0JA* PD2 .. ‘}~. $ (3)
,’,:::/:’\,.*:..*>.\\

Where K is a constant pertaining to the parti~$~$~~~it. K can be determined from equation 3 by measuring PD (at equilibrium)

for a known TA. Using this value of K the va~~~~:Qft,@Dand TJ can be obtained by solving equations(1) and (2) iteratively for any
value of TA, *‘:*,..,,,>f:?>,{,,,>i,,t

~“,’.,,\<...~\ ‘~$,\.,!.{w
‘-.<~:,.~~y>

V’i, .\\
,::,2.CF i?~jt:,?...},.

DC ELECTRICAL CHARACTERl~%~C~(Vcc= 5,0 Vdc, +5%, Vss = O, TA= TL to TH unless otherwise noted),..:$:,?,$,,,..,,.,>

“ ~~@aracteriatic\t$.<,%,\..&i,t.

Input High Voltage “i’;,,L,, ‘$, Logic“a?+$,}.,,’~,;>?
~.,t...t, 41,42

Input Low Voltage ~w”$&~$,$# Logic
.,. , ‘<$

.,~’tat;.{,,,\ .:,, ~1 ,42
*,,.;’.

Input Leakag@:$~&f$n~

(Vin =Ot&@&~~, Vcc= Max) Logic
(Vin ~&!0,~~@5 V, Vcc=o V to 5.25 V)

Hi-~@bkti@akage Current

@l, #2

D&D7
f~#’@&.4 to 2.4 V, Vcc = Max) AO-A15, Rlw

~w~? High Voltage

‘$$lLoad= - 205tiA, Vcc= MinJ DO-D7
“(lLoad= – 1454A, VCC= Min) A&A15, R/~, VMA
(lLoad= – 100KA, VCC= Min) BA

Output Low Voltage (lLoad = 1.6 mA, VCC = Min)

Internal Power Dissipation (Measured at TA = TL)

Capacitance

(Vin=O, TA=250C, f=l.O MHz) ~1
42

DGD7
Logic Inputs

AO-A15, Rl~, VMA

—

Svmkl

VOH

VOL
PINT

Cin

Cout

VSS–0,3 – VSS+O.8 v
VSS–0,3 – VSS+O.4

— 1,0 2.5 PA

, [1 I

VSS+2.4 – –
VSS+2.4 – –

v

VSS+2.41 – I – I I
— ! — Ivss+o w,4 v

— I 0.5] 1,0 w
I I I I

— 25 35
— 45 70 pF
— 10 12.5
— 6.5 10

— — 12 pF

(M)MOTOROLA Semjconducfor Products Inc.

.-

2

CLOCK TIMING (Vcc= 5,0V, *5%, VSS=O, TA=TL to TH unless otherwise noted)

Characteristic Symbol Min Typ Max Unit

Frequency of Operation MC~ 0.1 – 1.0
MC68AO0 f 0.1 – 1.5 MHz
MCWBW 0.1 – 2.0

Cycle Time (Figure 1) M Cm 1.000 – 10
M C@AW tcyc O.m — 10 ps
MC~BW O.m – 10

Clock Pulse Width @l, @2 – MCmN w – 9m
(Measured at VCC– 0.6 V) @l, @2– MC6BAO0 pW~H Za – 9m ns

@l, @2 – MC68BO0 180 – 9W ,*!.
‘*{,1,

Total 01 and 42 Up Time MCH 90 –
.!>.,:..,.,.:~:~,— Y “~:..

600 – – d *“:*’:*L
w – – ‘$$:fi+s:~

~

M C~A~ t“t
MC6BBW

Rise and Fall Time (Measured between VSS +0.4 and VCC– O.6) tr, tf — — 1

Delay Time or Clock Separation (Figure 1)
, ,,,,

,,fj:$’,i~ ,’;?,..~’

(Measured at VOV=VSS+O.6 V@tr=tf=l~ ns) td o %$*t& ns,>+1,:,,

(Measured at VOV= VSS + 1.0 V@tr=tf S35 ns} o –$; y< “$,~
—.$:~,

?\:i..$*.’,

td+ + ‘d+ b,’’”

vl~c* ..,,,.,, <

,, . ..>.,,,.
.~t~ 4:.
*T, ,+1 MC~- .$~~+’<.~a..~+,k~ MC8BAO0 MC6BBO0

Character@i&$iF, ~~’ Symbol Unit
~\+,\ -i Min Typ Max Min Typ Max Min Typ Max
*,. :

Address DelaV ,~.;.,+-.~’--:$,‘:.$.....
~,t~,,,:y

..,,.
C=90pF , tA D – –,,,, 270 – – 1BO – – 150 ns
C=30 pF **3::,:> — — 2W – – 165 – – 135,,..,.. >

Peripheral Read Access ~fi&~f:
tacc = tut – (tAD +~~~$~. tacc 605 – — m – — 2W – — ns

Data Setup Tim$,:(~~~?: tDSR lm – – 60 – – 40 – – ns

Input Data H@me ‘ tH 10 – – 10 – – 10 – – ns

Output D~@ ‘~l,#Time tH 10 25 – 10 25 – 10 25 – ns

Addressf&,&,Jime (Address, R/~, VMA) tA H 30 50 – 30 a – m 50 – ns

Ena~~i~@Time for DBE Input tEH 450 – – 280 – – 220 – – ns

Data ~lav Time (Write) tDDW – – 225 – – 2W – – 160 ns

Processor Controls
Processor Control Setup Time tpcs 2m – – 140 – – 110 – –
Processor Control Rise and Fall Time tpcr, tpcf – – Im – – 100 – – 100
8US Available DelaV tBA – – 29 – – 165 – – 135 ns
Hi-Z Enable tTSE o – 40 0 – 40 0 – m
Hi-Z DelaV tTSD – – 270 – – 270 – – 220
Data Bus Enable Down Time During @l Up Time tDBE Iw – – 120 – – 75 – –
Data Bus Enable Rise and Fall Times tDBEr, tDBEf – – 25 – – 25 – – 25

— m M070ROLA Semiconductor Products Inc.
3

1

FIGURE 2 – READ DATA FROM MEMORY OR PERIPHERALS

/
Start of Cycle

+

@l ‘VIHC
~ 0.4 v 7 0.4 v

Data Not Valid

~ Start of Cvcle

‘):., [
Data

2.4 V

From MPU
0.4 v

I

k\\\\\\Y
Data Not Valid

ktDDw+

NOTES:
1. Voltage levels shown are VLSO.4, VH> 2.4 V, unless otherwise specified

2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise noted

@
MOTOROLA Semiconductor Produck Inc.

4

—

FIGURE 4 – TYPICAL DATA BUS OUTPUT DELAY
versus CAPACITIVE LOADING (TDDw)

600
I OH =-205A max @ 2.4 V

‘lo L=l.6mAmax@0.4V

500 - Vcc = 5.0v
1A= 25°C

~ 400
=
u
z
F 300
>

/

~ / ~

: 200 / ‘

- ~
/

100 /

CL includes stray capacitance
0’
0 100 200 300 400 500 600

CL,LOAO CAPACITANCE (pF)

FIGURE 5 – TYPICAL READ/WRITE, VMA, AND ADDRESS
OUTPUT DELAY versus CAPACITIVE LOADING (TAD)

600
lo H=-145*max@2.4V

‘lo L=l.6mAmax@0.4v

500 -VCC=5.OV
TA = 25°C -$,:,

z 400
u
z

~ 300
~
u
0 200

100

CL includes stray capacitance
o
0 100 2og~+~~ ,i$oo 400 500 600

@
MOTOROLA Semiconductor Products Inc.

5

I

FIGURE 7 – =PANDED BLOCK DIAGRAM

A15 A14 A13 A12 All A1O A9 A8 A7 A6 A5 A4 A3 A2 Al AO

Clock, @l

Clock, @2

RESET

Non-Maskable Interrupt

HALT

Interrupt Request

Three-State Control

Data Bus Enable

Bus Available

Valid Memory Address

Read/Wtite, Rl~

37

40

6
a

2

3

Instruction

4 Decode

and
39 Control

36+

34+
1

Instruction

Register
‘*” !*

..l.t\,,

@
MOTOROLA Semiconductor Products Inc.

6

.—

.—

.—

MPU SIGNAL DESCRIPTION

Proper operation of the MPU requires that certain control

and timing signals be provided to accomplish specific func-

tions and that other signal lines be monitored to determine

the state of the processor.

Clocks Phase One and Phase Two (o1, 42) – Two pins

are used for a two-phase non-overlapping clock that runs at

the VCC voltage level.

Figure 1 shows the microprocessor clocks. The high level

is specified at VIHC and the low level is specified at VILC.

The allowable clock frequency is specified by f (frequency).

The minimum @l and @2 high level pulse widths are specified

by PW~H (pulse width high time). To guarantee the required

access time for the peripherals, the clock up time, tut, is

specified. Clock separation, td, is measured at a maximum

voltage of VOV (overlap voltage), This allows for a multitude

of clock variations at the system frequency rate.

Address Bus (AOA15) – Sixteen pins are used for the ad-

dress bus. The outputs are three-state bus drivers capable of

driving one standard TTL load and 90 pF. When the output is

turned off, it is essentially an open circuit. This permits the

MPU to be used in DMA applications. Putting TSC in its high

state forces the Address bus to go into the three-state mode.

Data Bus (DO-D7) – Eight pins are used for the data bus.

It is bidirectional, transferring data to and from the memory

and peripheral devices. It also has three-state output buffer$

capable of driving one standard TTL load and 130 pF. D,a~$,

Bus is placed in the three-state mode when DBE is Io#t\,t w~$.
,{’.y...:>.:>,,:!:.?..

.+,.‘+:+”‘ ‘$,.?
Data Bus Enable (DBE) – This level sensitive i~[~t~$sthe

three-state control signal for the M PU data ~$~l:~yd will

enable the bus drivers when in the high st~:&$$@j9 Input is

TTL compatible; however in normal op~,atib~~$twould be

driven by the phase two clock. Durin&@n~~,K~ read cycle,

the data bus drivers will be disabled,’~~t~nal ly. When it is

desired that another device contr$PtR~&ata bus, such as in

Direct Memory Access (DMA)j+~k~@~ions, DBE should be

held low. ~t~.>.:,:,.,,, ,x.

If additional data setup+p[+ho~d~?me is required on an MPU

write, the DB E down ,~,~~ @n be decreased, as shown in
Figure 3 (DBE#@2\R:~~e~inimum down time for DBE is

tDB E as shown, ~~~.s}~ting D B E with respect to E, data

setup or hold t~,$@# be increased.
\\\$.;>L:.,.?J~,

Bus Ay~i$~l~.(bA) – The Bus Available signal will nor-

mally ~%~ ~}$’low state; when activated, it will go to the..,*.’:* Y
high.?ata~:+indicating that the microprocessor has stopped

* “’“’*’l+and @,@tfhe address bus is available. This will occur if the

HALT~ne is in the low state or the processor is in the WAIT

state as a result of the execution of a WAIT instruction. At

such time, all three-state output drivers will go to their off

state and other outputs to their normally inactive level. The

processor is removed from the WAIT state by the occurrence

of a maskable (mask bit I = O) or nonmaskable interrupt, This

output is capable of driving one standard TTL load and

30 pF. If TSC is in the high state, Bus Available will be low,

Read/Write (R/~) – This TTL compatible output signals

the peripherals and memory devices wether the MPU is in a

@
MOTOROLA

Read (high) or Wrile (low) state, The normal standby state of

this signal is Read (high). Three-State Control going high will

turn Read/Write to the off (high impedance) state. Also,

when the processor is halted, it will be in the off state. This

output is capable of drivina one standard TTL Ioa&?iqnd

90 pF.
~+,r+i~ .:}

RESET – The RESET input is used to rese~&}N~&~rt the

M PU from a power down condition resulti~~,jf~% a power

failure or initial start-up of the processor,+:~@l%~i&el sensitive

input can also be used to reinitialize t,$~~~~~ne at any time
after start-up. .)’ k%}?*

:t:;l,\ \
If a high level is detected in th~ Inpw; this will signal the

MPU to begin the reset seqe~$~. During the reset se-

quence, the contents of th,~?%f$wb locations (FFFE, FFFF)

in memory will be loade@{~~&,Jtie Program Counter to point

to the beginning of..,$~b.:wet routine. During the reset~.\J~t.~,,~y..
routine, the interrupt ~s~ bit is set and must be cleared

under program c~~ol, before the M PU can be interrupted by

IRQ. While ‘K%Jk’’low (assuminga minimum of8 clock
cycles have ~Jcc~$r8d) the MPU output signals will be in the

followinqj$&MVMA= low, BA= low, Data Bus= high im-

peda~~e,>~~~= high (read state), and the Address Bus will

con$&8 the ‘reset address FFFE. Figure 8 illustrates a power?}4
&“~q@~nce using the RESET control line. After the power

~i. ~,P@ reaches 4.75 V, a minimum of eight clock cycles are
?$:jlj$~qtiired for the processor to stabilize in preparation for

‘~trestarting. During these eight cycles, VMA will be in an in-
.lp~ determinate state so any devices that are enabled by VMA

which could accept a false write during this time (such as

battery-backed RAM) must be disabled until VMA is forced

low after eight cycles. RESET can go high asynchronously

with the system clock any time after the eighth cycle.

RESET timing is shown in Figure 8. The maximum rise and

fall transition times are specified by tpcr and tpcf. If RESET

is high at tpcs (processor control setup time), as shown in

Figure 8, in any given cycle then the restart sequence will

begin on the next cycle as shown. The RESET control line

may also be used to reinitialize the MPU system at any time

during its operation. This is accomplished by pulsing RESET

low for the duration of a minimum of three complete 42

cycles. The RESET pulse can be completely asynchronous

with the MPU system clock and will be recognized during 42

if setup time tpcs is met.

Interrupt Request (~Q) – This level sensitive input re-

quests that an interrupt sequence be generated within the

machine. The processor will wait until it completes the cur-

rent instruction that is being executed before it recognizes

the request. At that time, if the interrupt mask bit in the Con-

dition Code Register is not set, the machine will begin an in-

terrupt sequence. The Index Register, Program Counter, Ac-

cumulators, and Condition Code Register are stored away on

the stack. Next, the MPU will respond to the interrupt re-

quest by setting the interrupt mask bit high so that no further

interrupts may occur. At the end of the cycle, a 16-bit ad-

dress will be loaded that points to a vectoring address which

is located in memory locations FFF8 and FFF9. An address

loaded at these locations causes the MPU to branch to an in-

terrupt routine in memory. Interrupt timing is shown in

Figure 9.

Semiconductor Products Inc.
7

The HALT line must be in the high state for interrupts to
be serviced. Interrupts will be latched internally while HALT
is low.

The ~ has a high-impedance puilup device internal to
the chip; however, a 3 kQ external resistor to VCC should be
used for wire-OR and optimum control of interrupts.

Non-Maskable Interrupt (NMI) and Wait for Interrupt
(WAI) – The MCWCO is capable of handling two types of in-
terrupts: maskable (~) as described earlier, and non-
maskable (~) which is an edge sensitive input. IRQ is
maskable by the interrupt mask in the condition code register
while ~ is not maskable. The handling of these interrupts
by the M PU is the same except that each has its own vector
address. The behavior of the MPU when interrupted is
shown in Figure 9 which details the MPU response to an in-
terruDt while the MPU is executina the control ~roaram. The
interrupt shown could be either ~Q or ~ and ca~ be asyn-
chronous with respect to +2. The interrupt is shown going
low at time tpcs in cycle #1 which precedes the first cycle of
an instruction (OP code fetch). This instruction is not ex-
ecuted but instead the Program Counter (PC), Index
Register (IX), Accumulators (ACCX), and the Condition
Code Register (CCR) are pushed onto the stack,

The Interrupt Mask bit is set to prevent further interrupts.
The address of the interrupt service routine is then fetched
fram FFFC. FFFD for an NMI interruDt and from FFF8, FFF9
for an ~’interrupt. Upon complet~on of the interrupt ser-
vice routine, the execution of RTI will pull the PC, IX, ACCX,
and CCR off the stack; the Interrupt Mask bit is restored to
its condition prior to Interrupts (see Figure 10).

Figure 11 is a similar interrupt sequence, except in this
case, a WAIT instruction has been executed in prepara$$~
for the interrupt. This technique speeds up the M&U’”~
response to the interrupt because the stacking of tbe~~~$.W,
ACCX, and the CCR is already done. While t~~$fM@ iS

waiting for the interrupt, Bus Available wilP&@+{Q?~h in-
dicating the following states of the control lj~~Y~MA is low,
and the Address Bus, R/~and Data B~~ ~~, ~{ in the high
impedance state. After the interrupt w-$* ISserviced as
previously described.

,.\, .<},it?~,,,::
A 3-10 kQ external resistor to V&*’&~&tild be used for wire-

OR and optimum control of igi~r~w~t~.
,*+$..,,. “$,’..

MEMORY MAP.@R IMRRUPT VECTORS
~:.$ ‘*, ,,$’

Vetior ,.., ;. ‘~’

MS ,,f*y Description

FFFE :,* E=3 Reset

FFFQ”J” %FFD Non-Maskable Interrupt
E&.~\x}i,,$ FFFB Software Interrupt

‘$,~aip” ~ — Interrupt Request

Three-State Control (TSC) – When the level sensitive
Three-State Control (TSC) line is a logic “l”, the Address
Bus and the Rim line are placed in a high-impedance state.
VMA and BA are forced low when TSC= “1” to prevent
false reads or writes on any device enabled by VMA. It is
necessary to delay program execution while TSC is held
high. This is done by insuring that no transitions of 41 (or 42)
occur during this period. (Logic levels of the clacks are irrele-
vant so long as they do not change). Since the MPU is a
dynamic device, the 01 clock can be stopped for a maximum

@
MOTOROLA

time PW@H without destroying data within the M PU. TSC
then can be used in a short Direct Memory Access (DMA)
application.

Figure 12 shows the effect of TSC on the MPU. TSC must
have its transitions at tTSE (three-state enable) while holding
+1 high and +2 low as shown, The Address Bus and Rl~
line will reach the high-impedance state at tTSD (three-state
delay), with VMA being forced low. In this exampl$~%the
Data Bus is also in the high-impedance state while,,~;~@&-
ing held low since DBE= 42. At this point in ti@e~,$,’)~MA
transfer could occur on cycles #3 and #4. -+$~SC is
returned low, the MPU Address and R/~lfl&/&Mrn to the
bus. Because it is too late in cycle #5 to,,~cp~,~emory, this
cycle is dead and used for synchroni$~~w.i$~rogram execu-
tion resumes in cycle #6. ..>;..*’ .!~:l.’~\k:\,

.:~:.3,~.:~’
‘1~$~

Valid Memory Address (VM&,~~$ This output indicates to
peripheral devices that the~@&.@~a~?daddress on the address
bus. In normal operation~<gti~, signal should be utilized for
enabling peripheral i~tf~f~w’ such as the PIA and ACiA..y;.%,,a:.~+~b~
This signal is not thr@T~te. One standard TTL load and
90 pF may be d~&ly dfiven by this active high signal.

~,.,,+$s:.:>
..?XL?*>’.~~’.

HALT - ~h”~$’~%is level sensitive input is in the low state,
all activik~~o?~~e machine will be halted. This input is level-.:<.~.~~
sensitj,ve. +i.,,

l.ti~~ line provides an input to the MPU to allow con-
{W,gf”Program execution by an outside source. If HALT is

+..~.g@ the MPU will execute the instructions; if it is low, the
“*~PU will go to a halted or idle mode. A response signal, Bus‘~+,’tv:a,::

“’t~, Available (BA) provides an indication of the current MPU
$’+ status. When BA is low, the MPU is in the process of ex-

ecuting the control program; if BA is high, the MPU has
halted and all internal activity has stopped,

When BA is high, the Address Bus, Data Bus, and Rl~
line will be in a high-impedance state, effectively removing
the MPU from the system bus. VMA is forced low so that the
floating system bus will not activate any device on the bus
that is enabled by VMA.

While the MPU is halted, all program activity is stopped,
and if either an ~ or IRQ interrupt occurs, it will be latched
into the MPU and acted on as soon as the MPU is taken out
of the halted mode. If a RESET command occurs while the
MPU is halted, the following states occur: VMA= low,
BA= low, Data Bus= high impedance, Rl~= high (read
state), and the Address Bus will contain address FFFE as
long as RESET is low, As soon as the RESET line goes high,
the MPU will go to locations FFFE and FFFF for the address
of the reset routine.

Figure 13 shows the timing relationships involved when
halting the MPU. The instruction illustrated is a one byte, 2
cycle instruction such as CLRA. When HALT goes low, the
MPU will halt after completing execution of the current in-
struction. The transition of HALT must occur tpcs before
the trailing edge of @l of the last cycle of an instruction
(point A of Figure 13). HALT must not go low any time later
than the minmum tpcs specified.

The fetch of the OP code by the M PU is the first cycle of
the instruction. If HALT had not been low at Point A but
went low during 42 of that cycle, the MPU would have
halted after completion of the following instruction. BA will
go high by time tBA (bus available delay time) after the last
instruction cycle. At this point in time, VMA is low and R/~,
Address Bus, and the Data Bus are in the high-impedance
state.

Semiconductor Products Inc.
9

1

To debug programs it is advantageous to step through Iinesare back on the bus. Asingle byte, 2 cycle instruction

programs instruction byinstruction .To do this, HALT must such as LSRisused forth isexample also. During the first cy-

be brought high for one MPU cycle and then returned low as cle, the instruction Y is fetched from address M+l. BA

shown at point B of Figure 13. Again, the transitions of returns high at tBA on the last cycle of the instruction in-

HALT must occur tpcs before the trailing edge of $1. BA dicating the MPU is off the bus. If instruction Y had been

will go low at tBA after the leading edge of the next @l, in- three cycles, the width of the BA low time would have been

dicating that the Address Bus, Data Bus, VMA and Rl~ increased by one cycle.

FIGURE 10 – MPU FLOWCHART

f Y

1 +BA

3

Y

●

I 1

1.
2

3

0A

Reset is recognized at any position in the flowchart.
Instructions which affect the l-Bit act upon a on~bh buffer register,
“lTMP.” This has the effect of delaying any CLEARING of the l-Bit one
clock time. Setting the l-Bit, however, is not delayed.

See Tables 6-11 for details of Instruction Execution.

m MOTOROLA Semiconductor Products Inc.
10

Address

Bus

R/R

VMA

Interrupt

IRQ or

m

Data Bus

BA

FIGURE 11 – WAIT INSTRUCTION TIMING

I Cycle I I I I I I I I I#1 * * #4 * & #7 #8 * #1 o n n+l n+2

New PC
Address

x x x x x x xInstruction

\ 1[

First Inst

of Interrupt

Routine

x

xx x x x x x x x x x
Wait Pc 0-7 PC 8-15 I 0-7 I B-15 ACCA ACCB New PC 8-15 New PC O-7

I nst [[Address Address

A

Note: Midrange waveform indicates

high iMDedanCe state.
-TBA

FIGURE 12..+$tikE-STATE CONTROL TIMING

1

@l

@z

m

BA

VMA

R/%

Address

Bus

Data

Bus

FIGURE13 – HALT AND SINGLE INSTRUCTION =ECUTION FOR SYSTEM DEBUG

m
Instruction

Instruction Instruction

Fetch Execute

\ /XYx {1
))

x XY
Fetch Exwute

Addr M x

.,
, :.~~>),

The M PU has three 16-bit registers and thra-$,8~*@
registers available for use by the programmer (FJ$’@?~d@.

*.Y -I:,.,~~>,$

Program Counter – The program count~$&~?:’&t&o byte
(16 bits) register that points to the curre~~,”w~$m address.

,+$,‘~,i

Stack Pointer – The stack pon~*i~%,;&o byte register
that contains the address of the ne&,,a$ilable location in an
external push-down/pop-up st$~~$~fs stack is normally a
random access Read/Write,,,%b*~.#’’that may have any loca-
tion (address) that is conV@ieJ~t. In those applications that
require storage of inf@~atidB’ In the stack when power is
lost, the stack muskl~~~~volatile.,.,,,

$:.,,, ~?, ..

Index RWis~~~~~$%e index register is a two byte register
that is used x~i$~$?data or a sixteen bit memory address for
the lnde&& &&e of memory addressing.

;8 *,.:,.:$.,,,
{..\..:+L.\:!!i,

Aq~$#~ators – The MPU contains two 8-bit ac-
cwuktprs that are used to hold operands and results from
a~~{~~metic logic unit (ALU).

...

Condition Code Register – The condition code register in-
dicates the results of an Arithmetic Logic Unit operation:
Negative (N), Zero (Z), Overflow (V), Carry from bit 7 (C),
and half carry from bit 3 (H). These bits of the Condition
Code Register are used as testable conditions for the condi-
tional branch instructions. Bit 4 is the interrupt mask bit (l).
The unused bits of the Condition Code Register (b6 and b7)
are ones.

@ MOTOROLA

FIGURE14 – PROGRAMMING MODEL OF
THE MICROPROCESSINGUNIT

Pc

15 0

SP

7

m
llt

o

wINZVC

Carrv (From Bit 7)

Overflow

Accumulator A

Accumulator B

Index Register

Program Counter

Stack Pointer

Condition Code
Registar

II - zero
r ;:::t

Half Carrv (From Bit 3)

Semiconductor Products Inc.
12

-.

—.

MPU INSTRUCTION SET

The MC~ instructions are described in detail in the When an instruction translates into two or three bytes of
MWW Programming Manual. This Section will provide a code, the second byte, or the second and third bytes con-
brief introduction and discuss their use in developing tain(s) an operand, an address, or information from which an
MC~ control programs. The MC66W has a set of 72 dif- address is obtained during execution.
ferent executable source instructions. Included are binary Microprocessor instructions are often divided into three
and decimal arithmetic, logical, shift, rotate, load, store, general classifications: (1) memory reference, so called
conditional or unconditional branch, interrupt and stack because they operate on specific memory locations; (2)
manipulation instructions. operating instructions that function without needing a

Each of the 72 executable instructions of the source memory reference; (3) 1/0 instructions for transferring data
language assembles into 1 to 3 bytes of machine code. The between the microprocessor and peripheral devices. $+cl+
number of bytes depends on the particular instruction and In many instances, the M Cm performs the sarn”$*a-
on the addressing mode. (The addressing modes which are tion on both its internal accumulators and ~#r@rnal
available for use with the various executive instructions are memory locations. In addition, the MC%:,~@terface
discussed later,) adapters (PIA and ACIA) allow the MPU t~$~~~k~peripheral

The coding of the first (or only) byte corresponding to an devices exactly like other memory loca@~$.3@#nce, no 1/0
executable instruction is sufficient to identify the instruction instructions as such are required. Beca&Wq@these features,
and the addressing mode. The hexadecimal equivalents of

‘$,?~
other classifications are more sui~@fl~&~~b~introducing the

the binary codes, which result from the translation of the 72 MC66WS instruction set: (1) ,$cc’%hlator and memory

instructions in all valid modes of addressing, are shown in operations; (2) Program cont~~t~perations; (3) Condition
Table 1. There are 197 valid machine codes, 59 of the 256

~ i~~~
Code Register operations, ,,,~~~~, %

possible codes being unassigned.
~~-~,,, ,.,,\.,

, ,\<!\{.i$’‘~,,~:li‘*+\.,~~i,.t;~..

80
81
82
83
84
85
88
87
8a
a9
8A
aB
ac
8D
8E
8F
90
91
92
93
QA

SUB A IMM
CMP A IMM
SBC A IMM

AND A IMM

co
cl
C2
C3
C4
C5
ca
C7
C8

30
31
12

NOP
40
41
42
43
44
45
4a
47
48
49
4A
40
4C
4D
4E
4F
50
51
52
53
54
55
5a
57
5a
59
5A
5B
5C
5D
5E
5F
ao

NEG

COM
LSR

ROR
ASR
ASL
ROL
DEC

INC
TST

CLR
NEG

COM
LSR

ROR
ASR
ASL
ROL
DEC

INC
TST

A

A
A

A
A
A
A
A

A
A

A
B

B
B

B
B
B.

TAP
TPA
INX
DEX

BIT A IMM
LDA A IMM Notes: 1 Addressing Modes:

A= Accumulator A
B = Accumulator B
REL = Relative
INO = Indexed

IMM = Immetiate
DIR = Direc?

2. Unassign4 code indicated by J# *)‘.

EOR A IMM IMM
IMM
IMM
IMM

IMM

OIR
DIR
DIR

DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR

DIR
DIR
IND
IND
IND

IND
IND
IND
IND
IND
IND
IND
IND

IND
IND
EXT
EXT
EXT

EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT

3A
3B
3C
?D
3E
3F
10
11
12
13
14
15
16
17
18
19
1A
IB
Ic
ID
IE
IF
20
21
22
23
24
25
2a
27
2a
29

CLV
SEV
CLC
SEC
CLI
SEI
SBA
CBA

B

B
B
B

B
B
B
B
B
B
B
B

B
B
B

B
B
B
B
B
B
B
B

B
B
B

B
a
B
B
B
B
B
a

CE LDX
CF .
DO SUB
01 CMP
D2 SBC
D3 “
D4 AND
D5 BIT
D6 LDA
D7 STA
Da EOR
D9 ADC
DA ORA
DB ADD
DC ‘
DD .
DE LDX
DF STX
EO SUB
El CMP
E2 SBC
E3 .
E4 AND
E5 BIT
Ea LDA
E7 STA
E8 EOR
E9 ADC
EA ORA
EB ADD
EC .
ED .
EE LDX
EF STX
FO SUB
F1 CMP
F2 SBC
F3 .
F4 AND
F5 BIT
F6 LDA
F7 STA
F8 EOR
F9 ADC
FA ORA
FB ADD
FC “
FD .
FE LDX
FF STX

DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR

DIR
DIR
IND
[ND
IND

IND
IND
IND
IND
IND
lND
IND
IND
IND
IND
IND
IND
EXT
EXT
EXT

EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT

TAB
TBA A

A
A
A
A

A
A
A

A
A
A
A
A
A
A
A

A
A
A

A
A
A
A
A
A
A
A

DAA

ABA

9D
9E
9F
AO
Al
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
B1
B2
B3
B4

LDS
STS
suaBRA REL

REL

IND
CMP
SBCBHI

REL
REk

IND
INO

IND
INO
IND
IND

AND
BIT
LDA
STA
EOR
ADC
ORA
ADD

(ND

ac INC
ao TST
aE JMP
6F CLR
70 NEG
71 .
72 .
73 COM
74 LSR
75 .
7a ROR
77 ASR
78 ASL
79 ROL
7A DEC
7B .
7C INC
7D TST
7E JMP
7F CLR

INO
IND
IND
IND
EXT

EXT
EX1

EXT
EX1
EX1
EX1
EX1

EX1
EX1
EX1
EX1

CPX
JSR
LDS
STS
SUB
CMP
SBC32 PUL A

33 PUL B
34 DES
35 TXS
36 PSH A
37 PSH B
38 .

AND
BIT
LDA
STA
EOR
ADC
ORA
ADD
CPX
JSR

B5
Ba
B7
Ba
B9
BA
BB
BC
BD
BE
BF

39 RTS
3A “
3B RTI
3C “
3D .
3E WAI
3F Swl

LOS
STS

EXT
EXT

m MOTOROLA Semiconductor Products Inc.
13

1

----- - ---- ---- .-,-. ,-
lABLt Z — ALUUMULAIUR AND MtMUMY UrErnAt IUN>

OPERATIONS MNEMONIC

Add

Add Acmltrs

Add wlfh Carry

And

Blt Tesl

Clear

Compare

Compare Acmltrs

Complement, 1’s

Complement, 2’s

(Negate)

Dec!mal Adi.st, A

Decrement

ExcI”si”e OR

Increment

Load Acmltr

Or, Inclusive

Push Oata

Pull Oata

Rotate Left

Rotate R,ght

Shift Left, Ar!thmet!c

Sh[ft Right, Arfthmet!c

Sh!f! Right, Logic

Store Acmltr.

Subtract

Subtracf Acmltrs.

ADDA

ADOB

ABA

AOCA
AOCB

ANDA

ANOB

BITA
BITE

CLR
CLRA

CLRB

CMPA
CMPB

CBA

COM

COMA

COMB

NEG

NEGA

NEGB

OAA

OEC

oECA

OECB

EORA

EORB

INC

INCA

INCB

LOAA

LDAB

O RAA
ORAB
PSHA

?SHB
PU LA

PU LB

ROL
ROLA

ROLB

ROR

RORA

RORB

ASL

ASLA

ASLB

ASR
ASRA

ASRB

LSR

LSRA

LSRB

Arithmetic Minus;

Boolean ANO:

MSP contents Of memow location pointed to be Stack Pointer:

Boolean Inclusive OR;

& Boolean Exclusive OR;

M Complement of M;
+ Transfer Into;

o Bit = Zero;

00 Byte = Zero;

AOORESSING MOOES

EXTNOINOEX

1P-=

CON OtTION CODE SYMBOL5

H Hal f.carrv from bit 3;

I Interrupt mask

N Negative (tign bit)

z Zero (byte)
v Ovetilow, 2’s complement
c Carv from bit 7
R Rewt Always
s Set Alwav$

IMPLIEO

1P-=

B21

F21

F21

121

1321

i321

lo2f

io21

1921

IA21

,A21

1C21

iC21

!9 2

j9 2

!6 2

j6 2

$8 2

58 2

a7 2

57 2

44 2

54 2

10 2

16 2
17 2

$0 2

50 2

1

1

1
I

1
1

1

1

1

1

1

1

1

1

1

I
1

1

1
—

BOOLEAN/ARITHMETIC OPERATf ON

(All register labels
refer to contents)

A+ M-A
B+M+B

A+ MSp, SP-f-SP
B-, Msp, SP–l+SP

SP+I-SP, MSP-A

SP+I+SP, MSP-B
M

A

B }L-’’’’””Jc b7 - bO

M

A

B lk-’’’’”[dc b7 — bO

M

A

}

o-~ - 0

B b7 bO C

A’-M

B-M

A– M-A

B– M-B

A– B-A
A–M– C-A

B- M– C-B

A-B

B-A
M–00

A–00
B–DO

CON OITION COOE REGISTER NOTES:

(Bit Set if testis true and cleared otherwise]

1 (BitV) Test: Result = 1000OOOO7

2 (Bit C) Test: Result = 000000007

3 (Bit C) Test: Oecimal value of most significant BCO

Character greater than nine?

(Not cleared if previously set.]

4 (Bit V) Test: Operand= 10000000 prior to execution?

5 (Bit V) Test: Operand= 01111111 prior to execution?

t Test and set if true, cleared otherwise 6 (Bit V) Test: Set equal to result of N@C after shift has occurred
● Not Affected

Note – Accumulator addresbng mode instructions are included in tho column for IMPLIEO addressing

@
MOTOROLA Semiconductor Products Inc.

14

.-

.—

-.

PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two
categories: (1) Index Register/ Stack Pointer instructions; (2)
Jump and Branch operations.

Index Register/ Stack Pointer Operations

The instructions for direct operation on the MPU’S Index
Register and Stack Pointer are summarized in Table 3.
Decrement (DEX, DES), increment (INX, INS), load (LDX,
LDS), and store (STX, STS) instructions are provided for
both. The Compare instruction, CPX, can be used to com-
pare the Index Register to a 16-bit value and update the Con-
dition Code Register accordingly.

The TSX instruction causes the Index Register to be load-
ed with the address of the last data byte put onto the
“stack. ” The TXS instruction loads the Stack Pointer with a
value equal to one less than the current contents of the Index
Register. This causes the next byte to be pulled from the
“stack” to come from the location indicated by the index
Register. The utility of these two instructions can be clarified
by describing the “stack” concept relative to the M@W
system.

The “stack” can be thought of as a sequential list of data
stored in the MPU’S read/write memory. The Stack Pointer
contains a 16-bit memory address that is used to access the
list from one end on a last-in-first-out (LIFO) basis in contrast
to the random access mode used by the MPU’S other ad-
dressing modes.

The MC~ instruction set and interrupt structure allow
extensive use of the stack concept for efficient handling of
data movement, subroutines and interrupts. The instructi~.os
can be used to establish one or more “stacks” anywhg~~~<
read/write memory. Stack length is limited only <,q~$~~e
amount of memory that is made available. .,is,~ ,.,

Operation of the Stack Pointer with the Pus@,@i~~,Rtillin-
structions is illustrated in Figures 15 and 1~~..%~.$ush in-
struction (PSHA) causes the contents of kd$~~icated ac-
cumulator (A in this example) to be stor~+in;wemory at the
location indicated by the Stack Point@r. ~Q&Stack Pointer is
automatically decremented by ~~~~$~t~wing the storage
operation and is “pointing” to th~~:~e{$empty stack location.
The Pull instruction (PULA ..@~:~%’B) causes the last byte
stacked to be loaded intothe:w’ropriate accumulator. The

Stack Pointer is automatically incremented by one just prior
to the data transfer so that it will point to the last byte stack-
ed rather than the next empty location. Note that the PULL
instruction does not “remove” the data from memory; in the
example, 1A is still in location (m+ 1) following execution of
PULA. A subsequent PUSH instruction would overw~jt~~at
location with the new “pushed” data. ‘..$.,,,.$,.*,.,,.:

i:~).:~~.f.,k\,
Execution of the Branch to Subroutine (B SR)a$d. #~rrfp to

Subroutine (JSR) instructions cause a returD%~*~ to be
saved on the stack as shown in Figures 18$~w~@ 20. The
stack is decremented after each byte of,.#$r@?n address is
pushed onto the stack. For both of$&~~N@structions, the
return address is the memory locatid~ f~jo’wing the bytes of
code that correspond to the B,S$.:an’~:$&SRinstruction. The
code required for BSR or J g~g”~<y be either two or three
bytes, depending on whet~r,%~.J S R is in the indexed (two
bytes) or the extende~$~$~$@ bytes) addressing mode.
Before it is stacked, t@<&~$Yam Counter is automatically in-
cremented the correct Rgmber of times to be pointing at the
location of the ~$~~~$truction. The Return from Subroutine
lnstruction,,,@K$~~puses the return address to be retrieved
and Ioade@ I$to t~e Program Counter as shown in Figure 21.

There $r~s~$eral operations that cause the status of the
M PU.,$0b$wved on the stack. The Software Interrupt (SWI)
and$%ait for Interrupt (WAI) instructions as well as the
~?~,ah~e (~Q) and non-maskable (N MI) hardware inter-

-$ ‘~~@J&all cause the M PU’S internal registers (except for the
,.,,,:f?
*,..~,@tack Pointer itself) to be stacked as shown in Figure 23.

“$k MPU status is restored by the Return from Interrupt, RTI, as
,,\.

shown in Figure 22.

Jump and Branch Operation

The Jump and Branch instructions are summarized in
Table 4. These instructions are used to control the transferor
operation from one point to another in the control program.

The No Operation instruction, NOP, while included here,
is a jump operation in a very limited sense. Its only effect is to
increment the Program Counter by one. It is useful during
program development as a “stand-in” for some other in-
struction that is to be determined during debug. It is also us-
ed for equalizing the execution time through alternate paths
in a control program.

!*,. .s. .
, ‘:.

?::r~~~,,,t>~i*,
?..*

.t‘*:Z !$s. iMMED DIRECT

PO 1NT$&Q$~&&?10 NS MNEMONIC OP - = OP - ~

Co mp%~$~:her Reg CPX 8C 3 3 9C 4 2

o~eq~,:~$ndex Reg OEX

Oe~.~efit Stack Pntr O ES

lnc;&ment Index Reg INX

Increment Stack Pntr INS

Load Index Reg LOX CE 3 3 OE 4 2

Load Stack Pntr LOS 8E 3 3 9E 4 2

Store Index Reg STX DF 5 2

Store Stack Pntr STS 9F 5 2

Indx Reg +Stack Pntr TXS

Stack Pntr * Indx Reg TSX

OP
—

AC

EE

AE

EF

AF

62

162

62

72

72

f
OP

Bc

FE

BE

FF

BF

(TNO

5

5

6

6

IMPLIEO I—
OP
—

09

34

08

31

35

30—

—

—

4

4

4

4

4

4
—

~

BOOLEAN/ARITHMETIC OPERATION

1

1

1

1

I

L11

X–l+x

SP–1-SP

X+l+x

SP+l+SP

MA XH, (M+l) -XL

M+ SPH, (M+1)4SPL

XH+M, XL+(M+l)

SPH+M, SPL~(M+l)

X-1-SP
SP+l+X

@ (Bit N) Test: Sign bit of most significant (MS) byte of result= 1?

@ (Bit V) Test: 2s complement o“erfiow from subtraction of m. byte.?

@ (Bit N) Test: Result Iesstha” zero? (Bit 15= 1)

@
MOTOROLA Semiconductor Products Inc. —

15

I

CO ND. COOEREG

I

FIGURE 15 – STACK OPERATION, PUSH INSTRUCTION

SP~m

.{EI

m+l 7F

Previously
Stacked m+2 63

Data

m+3 FD

‘c--
(a) Before PSHA

MPU

m

~’q..i,
% (b) Aftar PSHA

Pc ~ PULA

Next In$tr.

MPU

I I

I ACCA m I

m—2

m—1

m

SP+m+l

{

mt2

Previously
Stacked m+3

Data

I

1A

3C

D5
\

P
(b) After PULA(a) Before PULA

m MOTOROLA Semiconductor Products Inc.
16

—

—

OPERATIONS

Branch Always

Branch If Carry Clear

Branch If Carry Set

Branch If = Zero

Branch If > Zero

Branch If >Zero

Branch If Higher

Branch If < Zero

Branch If Lower Or Same

Branch If < Zero

Branch If Minus

Branch If Not Equal Zero

Branch If Overflow Clear

Branch If Ovefilow Set

Branch If Plus

Branch To Subroutine

Jump

Jump To Subroutine

No Operation

Return From Interrupt

Return From Subroutine

Softwre Interrupt

Wait for Interrupt%

IAI puts Address Bus, RN, and

MNEMONIC

BRA

BCC

B CS

BEO

BGE

BGT

BHI

BLE

B LS

B LT

BMI

BNE

BVC

BVS

BPL

BSR

JMP

JSR

NOP

RTI

RTS

Swl
WAI

ita Businthet

TABLE 4 – JUMP AND BRANCH INSTRUCTIONS

CONO. COOE REG.

RE

G

G
24
25
27
2C
2E
22
2F
23
20
2B
26
28
29
2A
80

~

hl—

Y
4
4
4
4
4
4
4
4
4
4
4
4
4
4
8

—
‘n

T—
#
T
2
2
2
2
2
2
2
2
2
2
2
z
2
2
2

~

—

G—

6E
AO

m low

i—
—

3
9

—

—
—
#—

3
3

—

..?

L

I

I

I

I

I

@ (All) Load Condition Code Register from Stack. (See Special Op$@tic
—

BRANCH TEST T10

Vc

is required to exit the wait state.

Execution of the Jump Instruction, JMP, and Branch
Always, BRA, affects program flow as shown in Figure 17.
When the MPU encounters the Jump (Indexed) instruction,
it adds the offset to the value in the Index Register and %,
the result as the address of the next instruction to~b~;~x~$
ecuted. In the extended addressing mode, the add[e~~~?he

next instruction to be executed is fetched from ,$~$~*~~ca-
tions immediately following the JM P instructl~~~}K~WBranch

Always (BRA) instruction is similar to the J~~?~#~&nded) in-
struction except that the relative addre&Sin&. fiode applies

and the branch is limited to the rang~Wtkm$- 125 or + 127
bytes of the branch instruction i~$~}%%.~~e opcode for the~4,i..‘..,,..\.?,,$<‘
BRA instruction requires one les$by~ than J M P (extended)

but takes one more cycle to @?
The effect on program fl~~ f$r the Jump to Subroutine

(JSR) and Branch to Sw#rQu{*$ (BSR) is shown in Figures
18 through 20. Note t~%:$@Program Counter is properly in-
cremented to be$:~~~:n~ at the correct return address
before it is stac~&i,;~~#~ration of the Branch to Subroutine
and Jump to a~w~’tine (extended) instruction is similar ex-
cept for th@~~n~&>The BS R instruction requires less opcode
than J $$&R{%Q~#esversus 3 bytes) and also executes one cy-

~ (Bit 1) Set when interrupt occurs. if previously set, a Non-MaSk,:~e’’%?errUPt
~+. ‘~.*

‘+~’$..used as the end of a subroutine to return to the main pro-
~y: gram as indicated in Figure 21,

The effect of executing the Software Interrupt, SWI, and
the Wait for Interrupt, WAI, and their relationship to the
hardware interrupts is shown in Figure 22. SW! causes the
M PU contents to be stacked and then fetches the starting
address of the interrupt routine from the memory locations
that respond to the addresses FFFA and FFFB. Note that as
in the case of the subroutine instructions, the Program
Counter is incremented to point at the correct return address
before being stacked. The Return from Interrupt instruction,
RTI, (Figure 22) is used at the end of an interrupt routine to
restore control to the main program. The SWI instruction is
useful for inserting break points in the control program, that
is, it can be used to stop operation and put the MPU
registers in memory where they can be examined. The WAI
instruction is used to decrease the time required to service a
hardware interrupt; it stacks the MPU contents and then
waits for the interrupt to occur, effectively removing the
stacking time from a hardware interrupt sequence,

FIGURE 17 – PROGRAM FLOW FOR JUMP AND BRANCH INSTRUCTIONS

[X+K~ [,,-, (n+2)*Klxl
●K = Signed 7-bit value

(a) Jump (b) Branch

m MOTOROLA Semiconductor Products Inc.
17

I

FIGURE 18 – PROGRAM FLOW FOR BSR

a(n +2)H

-.

SP~m–2

m—1

m

m+l

n

n+l

n+2

“ + 1] tK = Offset* I

n+ 2 I Next Main l“str. I

* K = Signed 7-Bit value

(a) Before Execution

,~i)::~’
\ ,\~.,,

FIGURE 19 – PROGRAM FLOW FOR JSR (~TENDEm,\ ‘%, FIGURE 20 – PROGRAM FLOW FOR JSR (lNDWED)

r

m—1 (n+2)H

m (n+2)L

m+l 7E

7A

—

m—l

sP—m

m+l

B

7E

7A

PC_n

a

JSR=AD

n+l K = Of fset”

“+2 Next Main l“str.

“

g

JSR = AD

“+1 K = Offset

“+2 Next Main l“str.“1 JS R
I

n+ 2 I SL=Sub,. Addr, I

●K = 8-Bit U“sig”ed Value
PC+ X.+K 1st S.br, Instr. 1

r
1

(a) Before Ex%utton

““s=

“Contents of Index Register

(a) Before Execution (b) Afrer Execuxion

(S formed from
SH and SL) 1

(b) After Execution

MOTOROLA Semiconductor Products Inc.
18

SP-m–2

m—1

m

m+l

n

n+l

nt2

nt3

FIGURE 21 – PROGRAM FLOW FOR RTS

H m—2

(n+3)H m—1

SH = Subr. Addr. n+l

SL = Subr. Addr. n+2

I

BLast Subr. Instr.

R TS

Pc —

J

s“aLast Inter. Instr.

RTI

FLOW FOR RTI

m—7

m—6

m—5

m—4

m—3

m—2

m—1

sp~ m

Pc— “+1

s“

CCR

ACCB

ACCA

x~

XL

PCH

4

PCL

7E

I Next Main I“str. I

I Last S“br. Instr. I

(a) Before Execution (b) After Execution

@
MOTOROLA Semiconductor Products Inc.

19

I

FIGURE ~ – PROGRAM FLOW FOR INTERRUPTS

Wait For Hardware Interrupt or
Interrupt NonMaskable Interrupt (NMI)

.-

Software lnterruDt
Main Program’

n:=.

Main Program Main Program

:1= n-

7“
Sp +

Stack MPU
Register Contents

m—7

m—6

m—5

m—4

m—3

m—2

m—1

m

WI

FFF8 FFFC
FFF9 FFFD

FFFE
FFFF

dSet Interrupt
Mask (CCR 4)

Interrupt Memorv Assignment

FFF8 I IRQ I Ms
FFF9 IRQ LS

FFFA Swl MS

FFFB Swl LS
#

First Instr.

e BvFetching

Addr. Formed

Q

Load Interrupt
Vector Into

2.Eytes From Program Counter
Per, Mere,
Assign.

f
A

Interruot Proaram >,.
1 lstlnterruutlnstr. 1NOTE: MS= Most Significant Address Bvte;

LS = Least S~nificant Address Byte;
I 1

@
MOTOROLA Semiconductor Products Inc.

20

FIGURE 24 – CONDITIONAL BRANCH INSTRUCTIONS

BMI : N=l ; BEQ : Z=l ;

BPL : N=@ ; BNE : Z=4 ;

BVC : V=$; BCC : C=$;

BVS : V=l ; BCS : C=l ;

BHI : c+ z=@ ; BLT : N@V=l ;

BLS : C+z=l ; BGE : N@ V=@ ;

BLE : Z+(N@V)=l

BGT : Z+(N@V)=@ ;

The conditional branch instructions, Figure 24, consists of

seven pairs of complementary instructions. They are used to

test the results of the preceding operation and either con-

tinue with the next instruction in sequence (test fails) or

cause a branch to another point in the program (test suc-

ceeds).

Four of the pairs are used for simple tests of status bits N,

Z, V, and C:

1. Branch on Minus (B MI) and Branch On Plus (BPL) tests

the sign bit, N, to determine if the previous result was

negative or positive, respectively.

2. Branch On Equal (BEQ) and Branch On Not Equal

(BNE) are used to test the zero status bit, Z, to determine

whether or not the result of the previous operation was equal

to zero. These two instructions are useful following a Com-

pare (CMP) instruction to test for equality between an ac-

cumulator and the operand. They are also used following the
Bit Test (BIT) to determine whether or not the same bit pos~~

tions are set in an accumulator and the operand.
>.t;.’:

,Y).....,.,,~

3. Branch On Overflow Clear (BVC) and Branc@$~ns

Overflow Set (BVS) tests the state of the V bit to ~&~*e

if the previous operation caused an arithmetic Q@r,@~

4. Branch On Carry Clear (BCC) and Branch @~b$rY Set

(BCS) tests the state of the C bit to determ~~$$~~~previous

operation caused a carry to occur. BCC ~~,~~~b are useful
.,*.J?,’-~>,‘:?

CONDITION

for testing relative magnitude when the values being tested

are regarded as unsigned binary numbers, that is, the values

are in the range 00 (lowest) to FF (highest). BCC following a

comparison (CMP) will cause a branch if the (unsigned)

value in the accumulator is higher than or the same as the

value of the operand. Conversely, BCS will cause a branch if

the accumulator value is lower than the operand.

The fifth complementary pair, Branch On Higher (Qi&~~~,nd

Branch On Lower or Same (BLS) are, in a se~~~/~@~-

plements to BCC and BCS. BHI tests for both C ~n@~~O; if

used following a CMP, it will cause a branc~,?k~~pWalue in

the accumulator is higher than the oper&~~%50nversely,

BLS will cause a branch if the unsignq~’~~a~’”value in the

accumulator is lower than or the saW:~$J&b operand.

The remaining two pairs are u~~l ~ ‘testing results of

operations in which the values at% re&~Yded as signed two’s

complement numbers. This $%&&}{rom the unsigned binary

case in the following sen:~+~~.{~nsigned, the orientation is

higher or lower; in si~w’~,wo’s complement, the com-

parison is between @$~~g~&~ smaller where the range of

values is between – 1~,.,and + 127.

Branch On L@$~$anZero (BLT) and Branch On Greater

Than Or Eq~#k.~~~’~~G E) test the status bits for N @V= 1

and N e V{~$<,,r~pectively. B LT will always cause a branch

followin$~~s 8~~ration in which two negative numbers were

adde,~. in’~dition, it will cause a branch following a CMP in

wh#~$Jhe value in the accumulator was negative and the

,@$&~~n’&was positive. B LT will never cause a branch follow-
.,:t~@,$#CMP in which the accumulator value was positive and

,,+,. we operand negative. BGE, the complement to BLT, will{f$:,,.j..::}

‘*N cause. a branch following operations in which two positive
,+::> values were added or in which the result was zero.

The last pair, Branch On Less Than Or Equal Zero (BLE)

and Branch On Greater Than Zero (BGT) test the status bits

for Z@ (N+V) = 1 and Z@ (N +V) =0, respectively. The ac-

tion of BLE is identical to that for BLT except that a branch

will also occur if the result of the previous result was zero,

Conversely, BGT is similar to BGE except that no branch will

occur following a zero result.

CODE REGISTER
‘ i$,:,i;;*

,,,1.,. . .

.,.y ~
OPERATIONS

. .?“s$.~$$:’,,
‘$?.,,l~~k,J.F

The Condition ~~~~Register (CCR) is a 6-bit register to precede any SEI instruction with an odd opcode – such

within the MPU~~~kl$*useful in controlling program flow as NOP. These precautions are not necessary for MC~

during system d;%tlon. The bits are defined in Figure 25. processors indicating manufacture in November 1977 or

The instr~~lia~% shown in Table 5 are available to the user later.

for dire~#~@@@ulation of the CCR. Systems which require an interrupt window to be opened

A C~,$A/ instruction sequence operated properly, with under program control should use a CLI-NOP-SEI sequence

earl~:~~$~~ processors, only if the preceding instruction rather than CLI-SEI.

was $~d (Least Significant Bit= 1), Similarly it was advisable

@
MOTOROLA Semiconductor Products Inc.

21

L

CO ND. COOE REG.

E
= BOOLEAN OPERATION

1 O+c

1 0+1

1 O+v

1 l+C

1 1+1

1 l-v

1 A+CCR

1 CCR+A

mHI NZVC

● 00m* R

● R****

● .mm R.

● Ore** s
● S. *Q.
● **O s.

w
● ● ● * ● ●

The M P&%~&$ates on 8-bit binary numbers presented to it
via the..~t~~~?{~us. A given number (byte) may rePresent

eithe&~{~~@:or an instruction to be executed, depending on

w@.@/~,~s encountered in the control program. The Mm

ha$~~tinique instructions, however, it recognizes and takes

actloh on 197 of the 256 possibilities that can occur using an

8-bit word length. This larger number of instructions results

from the fact that many of the executive instructions have

more than one addressing mode.

These addressing modes refer to the manner in which the

program causes the MPU to obtain its instructions and data.

The programmer must have a method for addressing the

MPU’S internal registers and all of the external memory loca-

tions.

Selection of the desired addressing mode is made by the

user as the source statements are written. Translation into

@
MOTOROLA

appropriate opcode then depends on the method used. If

manual translation is used, the addressing mode is inherent

in the opcode. For example, the immediate, Direct, Indexed,

and Extended modes may all be used with the ADD instruc-

tion. The proper mode is determined by selecting (hex-

adecimal notation) 8B, 9B, AB, or BB, respectively.

The source statement format includes adequate informa-

tion for the selection if an assembler program is used to

generate the opcode. For instance, the Immediate mode is

selected by the Assembler whenever it encounters the “#”

symbol in the operand field. Similarly, an “X” in the operand

field causes the Indexed mode to be selected. Only the

Relative mode applies to the branch instructions, therefore,

the mnemonic instruction itself is enough for the Assembler
to determine addressing mode.

Semiconductor Products Inc. ~
22

—.

For the instructions that use both Direct and Extended “operands” but the space between them and the operator

modes, the Assembler selects the Direct mode if the operand may be omitted. This is commonly done, resulting in ap-

vaiue is in the range O-255 and Extended otherwise. There parent four character mnemonics for those instructions.

are a number of instructions for which the Extended mode is The addition instruction, ADD, provides an example of

valid but the Direct is not. For these instructions, the dual addressing in the operand field:

Assembler automatically selects the Extended mode even if

the operand is in the O-255 range. The addressing modes are Operator Operand Comment

summarized in Figure 26. ADDA MEM12 ADD CONTENTS OF MEM12 TO j&~$:k

or .t;..,

Inherent (Includes “Accumulator Addressing” Mode)
~~,~~1~$~,,?~..:$

ADDB MEM12 ADD CONTENTS OF MEM12 %Q #&C~

The successive fields in a statement are normally
i.;~:,,,,~ ,;i,\.JtJ$+t’$

separated by one or more spaces. An exception to this rule The example used earlier for the test instru~&~~?ST, also

occurs for instructions that use dual addressing in the applies to the accumulators and uses th,$~~~~ohulator ad-

operand field and for instructions that must distinguish re- dressing mode” to designate which o$,,x’v-accumulators

tween the two accumulators. In these cases, A and B are is being tested:
\,*\ ~$.;:.~#<:,\,~:;.jt .\~;,. .

Direct: n DO Instruction

Example: SUBB Z
Addr. Rane = O–255

A
n+l Z = Oprnd Address

n+2 Next Instr.

(K = One-Bvte Oprnd)

●

z&
OR .:,,.

(K = Two-Bvte Oprnd)

(K = One-Bvte Oprnd)

(K = Two-Bvte OPrnd)

J

ntl ZH = Oprnd Addr-s

n+2 ZL = Oprnd Address

n+3 Next Instr.
.

●

z&

OR

z [KH = Operand I

*“r,

n+2 Next Inst.

OR

n+2 I KL = Operand I

n+3 I Next Instr. I

Relative: n I Instruction
I

Example: BNE K

(K = Signed 7-Bit Value)

Addr. Range:
–125t0 +129
Relative to n.

●

●

(“+2)’K-
~ If Br”ch Tst False, ~ if Brnch Tst True.

Indexad: n Instruction
I

Example: ADDA Z, X

‘+1-

Addr. Range: n+2
I

Next Instr.

O–255 Relative to 1

Index Register, X o

●

(Z = a-Bit Unsignad
Value) x+z&

@
MOTOROLA Semiconductor Products Inc.

Q9

1

* :’@o

Operator Comment mode, the “address” of the operand is effectively the

TSTB TEST CONTENTS OF ACCB memory location immediately following the instruction itself.

or Table 7 shows the cycle-by-cycle operation for the im-

TSTA TEST CONTENTS OF ACCA mediate addressing mode.

A number of the instructions either alone or together with Direct and Extended Addressing Modes – In the Direct

an accumulator operand contain all of the address informa-

tion that is required, that is, “inherent” in the instruction

itself. For instance, the instruction ABA causes the MPU to

add the contents of accumulators A and B together and place

the result in accumulator A. The instruction INCB, another

example of “accumulator addressing,” causes the contents

of accumulator B to be increased by one. Similarly, INX, in-

crement the Index Register, causes the contents of the Index

Register to be increased by one.

Program flow for instructions of this type is illustrated in

Figures 27 and 28. In these figures, the general case is shown

on the left and a specific example is shown on the right.

Numerical examples are in decimal notation. Instructions of

this type require only one byte of opcode. Cycle-by-cycle

operation of the inherent mode is shown in Table 6.

Immediate Addressing Mode – In the Immediate address-

ing mode, the operand is the value that is to be operated on.

For instance, the instruction

Oper*or Operand Comment

LDAA #25 LOAD 25 INTO ACCA

causes the M PU to “immediately load accumulator A with

the value 25’; no further address reference is required. The

Immediate mode is selected by preceding the operand value

with the “#” symbol. Program flow for this addressing m,~de

is illustrated in Figure 29.
y..\

.*.,.J.$,i~>>,

The operand format allows either properly define$:$ym

bols or numerical values. Except for the instru~ti~~’WX,
LDX, and LDS, the operand may be any valu~,i~:~e,;~nge O

to 255. Since Compare Index Register (C&,~Q$.~~&’d Index
Register (LDX), and Load Stack Pointer (~$~;.$e~uire 16-bit

values, the immediate mode for these~%re~+ ~tistructions re-

quire two-byte operands. In th~:T~,Yate addressing

4
PROGRAM
MEMORY

Pc INSTR

GENERAL FLOW

PC = 5000

MPu

@

INDEX

a

RAM

zPROG RAM
MEMORY

INX

t I

EXAMPLE

and Extended modes of addressing, the operand field of the

source statement is the address of the value tha$+i$j~o be

operated on. The Direct and Extended modes d~ff~$:fi$y in

the range of memory locations to which they ~$~~trect the

M PU. Direct addressing generates a sin~l~.~~%~ operand

and, hence, can address only memory l@~&&~’& O through

255; a two byte operand is generated~{&~QEx&&~ded address-

ing, enabling the MPU to reach theik~~~J&”hg memory loca-

tions, 256 through 65535. An ex~&pl$ O* Direct addressing

and its effect on program flo,~~~ ~&lrated in Figure 30.

The M PU, after encoun\eW@<~e opcode for the instruc-

tion LDAA (Direct) at,~~ary location 5004 (Program

Counter= 5004), look~~~~$~:~next location, 5005, for the ad-

dress of the operan~$~~~{~~ sets the program counter equal

to the value foun@ t~~{~100 in the example) and fetches the
operand, in t~~~$$e a value to be loaded into accumulator

A, from th,~+~p~$$n. For instructions requiring a two-byte

operande$~hk~ LDX (Load the index Register), the operand

bytes $+~4&Be retrieved from locations 100 and 101. Table 8

sh%~ws t~~ cycle-by-cyc4e operation for the direct mode of

a*~ssi ng,

,~~’+i$xt~nded addressing, Figure 31, is similar except that a

:t:~:+~@-byte address is obtained from locations 5007 and 5008

~~,,.$$tafter the LDAB (Extended) opcode shows up in location

“e$s 5006. Extended addressing can be thought of as the “stan-
~y>t,$ dard” addressing mode, that is, it is a method of reaching

any place in memory. Direct addressing, since only one ad-

dress byte is required, provides a faster method of process-

ing data and generates fewer bytes of control code. In most

applications, the direct addressing range, memory locations

O-255, are reserved for RAM. They are used for data buffer-

ing and temporary storage of system variables, the area in

which faster addressing is of most value. Cycle-by-cycle

operation is shown in Table 9 for Extended Addressing.

FIGURE Z – ACCUMULATOR ADDRESSING

MPU

F
RAM

pROGRAM
MEMORY

B

Pc

w

INSTR

GENERAL FLOW

M Pu

mACCB

m

RAM

aPROGRAM
MEMORY

PC = 5001 INC B

EXAMPLE

@
MOrOROLA Semiconductor Producfs Inc.

24

—

—

-.

Relative Address Mode – In both the Direct and Extended the unconditional jump (JMP), jump to subroutine (JSR),
nodes, the address obtained by the MPU is an absolute and return from subroutine (RTS) are used.
~umerical address. The Relative addressing mode, im- In Figure 32, when the MPU encounters the opcode for
)Iemented for the MPU’S branch instructions, specifies a BEQ (Branch if result of last instruction was zero), it tests the
nemory location relative to the Program Counter’s current Zero bit in the Condition Code Register. If that bit is “O,” in-
Dcation. Branch instructions generate two bytes of machine dicating a non-zero result, the MPU continues execution
:ode, one for the instruction opcode and one for the with the next instruction (in location WIO in Figure 32). If the
‘relative” address (see Figure 32). Since it is desirable to be previous result was zero, the branch condition is satisfied
ible to branch in either direction, the 8-bit address byte is in- and the MPU adds the offset, 15 in this case, to PC+ 2 and
erpreted as a signed 7-bit value; the 8th bit of the operand is branches to location W25 for the next instruction.
rested as a sign bit, “O”= plus and “1”= minus. The re- The branch instructions allow the programmer to efficient-
naining seven bits represent the numerical value. This Iy direct the MPU to one point or another in the contro$.:~ro-
esults in a relative addressing range of * 127 with respect to gram depending on the outcome of test results. ~W~%e
he location of the branch instruction itself, However, the control program is normally in read-only memory #ti~$@not
)ranch range is computed with respect to the next instruc- be changed, the relative address used in execu@~~@t&ranch

ion that would be executed if the branch conditions are not instructions is a constant numerical valuq~’~~~@-by-cycle
iatisfied. Since two bytes are generated, the next instruction operation is shown in Table 10 for relatig& a~Q@ssing.
s located at PC + 2. If D is defined as the address of the

.}:\A,#‘
~,\ .!-,s. ,,i,

)ranch destination, the range is then: Indexed Addressing Mode – ~~~~d~xed addressing,
-!l!,.,,,

(PC+2)– 127SD S(PC+2)+127 the numerical address is variable qnd d~ends on the current

)r contents of the Index Register@~~$ource statement such as.+:Y>
PC–125<D~PC+129 ,.‘.~’\\..!.-,~.‘‘\,.~,*.\:)fJ~

Operator Operan~*~~~ ~
hat is, the destination of the branch instruction must be

Comment
STAA X Ut;;:~@&T A IN INDEXED LOCATION

vithin – 125 to + 1.29 memory locations of the branch in- *\+~*%\.g;~:
truction itself. For transferring control beyond this range, causes the M PU,:~q stalk the contents of accumulator A in.,)

.tJ;.,.,~<{y..,\\
., $:.?;,\

TABLE 6 – INHERENTMODE CYCLE-BY-CYCLE~~~~*lON

Addre* Mode Cycle VMA
,,+?

,:~, ,@ ~~’lw
and I nmructions Cycles # Lina Address Bus ~t.:.:~’ Lina,% Data Bus.r]i,

.,,.<,;,,,..- ,

ABA DAA SEC 1 1 Op Code Address
,,.t,,,,., .l’:.+.c:.~~*,:r,

2
1 Op Code

ASL DEC SE I ~.i: .$.

ASR INC SEV 2 1 OP Code Addrass + 1 ~*.st,&$f~ 1 Op Code of Next Instruction

CBA LSR TAB ‘!><::+:$<>
~,.;*:~\,

CLC NEG TAP .,?-
CLI NOP TBA >~:k(.’
CLR ROL TPA

.fi
~~~~,

CLV ROR TST ,~~ ~i~.,
COM SBA

,\,,,.\:$.>, ,
..*Y-. “’?.

DES 1 1 0 p$**j$dHress 1 Op Code
DEX
INS 4

2 1 ~~.~~$$e Address+ I 1 Op Code of Next Instruction

INX 3 0 *$~~$~~us Register Contents 1 Irrelevant Data (Note 1 )

4 1
~..~<f;~~~~w Register Contents Irrelevant Data (Note 1 )

PSH 1 ,/ S* ‘$~~~?.$OP Code Address 1 Op Code

4 .,t~,.:! ,),,,$ Op Code Addrass + 1 1 Op Code of Next Instruction

g 3 ‘$$,“’” , Stack Pointer o Accumulator Data
~,q ~p.~ # o>,. Stack Pointer – 1 1 Accumulator Data
.,.

PUL ?4>,,~j$ , ,
., ., . Op Code Address 1 Op Code

,{,:.-~\\,
.+ ~@*”~} 2 ‘

Op Code Address + 1 1 Op Code of Next instruction
.:!
‘\~\ \\t\*.’ 3 0 Stack Pointer 1 Irrelevant Data (Note 1 ).3..,,, ,.

~:’,$.,j$:t$“
,...“’i:.* . 4 1 Stack Pointer + 1 1 Operand Data from Stack

TSX
Y ~~.$,,-$:.‘-?;*-{.,J.~.~.ikb 1 1 Op Code Address 1 Op Code

,.*T. “‘,?.. ‘
$~” ... “J~ 4

2 1 Op Code Address+ 1 1 Op Code of Next Instruction
:.$

.. . . ‘k~:+.},t~$
*$,f..‘:%” 3 Q Stack Pointer 1 Irrelevant Data (Note 1 )

\**,,,.~.’~kq~,,.’
*Y., 4 0 New Index Register 1 Irrelevant Data (Note 1 )..,,

TX$~~~W ““ 1 1 Op Code Address 1 Op Code

y;.
4

2 1 OP Code Address+ 1 1 Op Code of Next Instruction

3 0 Index Register 1 Irrelevant Data

4 0 New Stack Pointer 1 Irrelevant Data

RTS 1 1 OP Code Address 1 Op Code

2 1 OP Code Address+ 1 1 Irrelevant Data (Note 2)

5 3 0 Stack Pointer 1 Irrelevant Data (Note 1 )

4 1 Stack Pointer + 1 1 Address of Next Instruction (High
Order Byte)

5 1 Stack Pointer + 2 1 Address of Next Instruction (Low
Order Byte)

@
M070ROLA Semiconductor Products Inc.

25



TABLE 6 – INHERENT MOOE CYCLE-BY-CYCLE OPERATION (CONTINUED)

I Address Mode CVcle VMA R lx
and Instructions Cycles # Line Address Bus Line Data Bus

WA I 1 1 Op Code Address 1 Op Code

2 1 Op Code Address + 1 1 Op Code of Next Instruction

3 1 Stack Pointer o Return Address (Low Order Byte)

4 1 Stack Pointer – 1 0 Return Address (High Order Byte) ‘Q,,x,

9 5
t:f,s:.,.;:~;$$*

1 Stack Pointer – 2 0 Index Register (Low Order By&G].;;.;” ~
“..*.,> !~{$

6 1 Stack Pointer – 3 0 Index Register (High Ord:[O &#}$

7 1 Stack Pointer – 4 0 Contents of Accumula~~. ~~p~ “p
.’.,,,.\{..>~,*r<,+

8 1 Stack Pointer – 5 0 Contents of Accurn,~taYM $:

9 1
\%*~,\.

Stack Pointer – 6 (Note 3) 1 Contents of CondF@5~,Segister

RTI 1 1 Op Code Address 1 Op Code
..*,i.,.:.$.,)yp,t,\,+

.a>~+m.,

2 1 Op Code Address+ 1 1 Irrelevant ~ata ~@te 2)

3 0 Stack Pointer 1 lrreleva$$k~~a (Note 1 )
...*;,*,\,,~<~.+,>+‘..,.>

4 1 Stack Pointer + 1 1 CoRW~&~ti Cond. Code Register from
S*.@” ,,s.

10 .\i?.....3:,~*.,
5 1 Stack Pointer + 2 %ts of Accumulator B from Stack1,4 :#&q$

6 1 Stack Pointer + 3 .3**: ‘%ntents of Accumulator A from Stack

7 1 Stack Pointer + 4 ‘f$ac ~y~e~ Register from Stack (High Order

8 1 Stack Pointer + 5 Index Register from Stack ( Low Order
Byte)

9 1 Stack Pointer + 6 ,>;: Next Instruction Address from Stack
,,,,.?,:*.

‘\.*: , (High Order Byte)

10 1 Stack Pointer + 7
,,,.y;,:,~, ,,.

~;? ~...k. 1 Next Instruction Address from Stack
,$ ~!’>i, ,;i) (Low Order Byte)
.+\ \ ..,,.....

SwI 1 1 Op Code Addresq&+,t~S 1 .Op Code
,,

2 1 Op Code Address ~{~ 1 Irrelevant Data (Note 1 )

3 1 Stack Poi$ter ~; o Return Address (Low Order BVte)
,><~.

4 1 Stack ,~in~~ – 1 0 Return Address (High Order Byte)

5 1 Sta*~hter – 2
{!,<,

o Index Register (Low Order Byte)- ...

12
6 1 :@~ok%~inter – 3 0 Index Register (High Order Byte)

~ ‘..S,:...,NTY’.*
J 1>j$‘:;t*,# Pointer – 4 0 Contents of Accumulator A

,.::,,/.. ,:~<, .,:>,
8 ,,{’!~$$ ;$tack Pointer – 5 0 Contents of Accumulator B

%~i>
,:,,i:\$\i?,

$1 ‘ Stack Pointer – 6 0 Contents of Cond. Code Register

$:TO ;6:r$o Stack Pointer – 7 1 Irrelevant Data (Note 1 )

.>’+):$W,$ 1 Vector Address FFFA (Hex) 1 Address of Subroutine (High Order
,~ $.}
:;,* :, Byte)

“’” “? ‘;’ 12 1,$,. .J$,* .,..>
:.$ Vector Address FFFB (Hex) 1 Address of Subroutine (Low Order

....% ,
:.+;l+,.:y Byte)

t$.~ ?

Note 1.
~’ .QA:.$~

If device wh.?~~ls,@dressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Dependi,n,~ 4Q b~ capacitance, data from the previous cycle may be retained on the Data Bus.

Note 2. Data is,@W~@ bv the MPU,

Note 3. Whil@?~$~,~PU is waiting for the interrupt, Bus Available will go high indicating the following states of the control lines: VMA is
lo~@~ess BUS, RM, and Data Bus are all in the high impedanca State.

,,:‘w:.”‘~.,~jl,
~.~> ,:

,,<.J*:\\> ‘,$.
,.,.!;.,...:,+ ....,y. .:’>”

~’~i>,,,;]*;i~.?J>
.l,*!<. -

th$w.~ory location specified by the contents of the Index

Re@ter (recall that the label “X” is reserved to designate the

Index Register). Since there are instructions for manipulating

X during program execution (LDX, INX, DEC, etc.), the in-

dexed addressing mode provides a dynamic “on the fly” way

to modify program activity.
The operand field can also contain a numetical value that

will be automatically added to X during execution. This for-

mat is illustrated in Figure 33.
When the MPU encounters the LDAB (Indexed) opcode in

location 5006, it looks in the next memory location for the

value to be added to X (5 in the example) and calculates the

required address by adding 5 to the present Index Register

value of 4~. In the operand format, the offset may be

represented by a label or a numerical value in the range O-255

as in the example. In the earlier example, STAA X, the

operand is equivalent to O, X, that is, the O may be omitted

when the desired address is equal to X. Table 11 shows the

cycle-by-cycle operation for the Indexed Mode of Address-

ing,

@
MOTOROLA Semiconductor Products Inc.

26



FIGURE = – IMMEDIATE ADDRESSING MODE FIGURE 30 – DIRECT ADDRESSING MODE

MPU

%
RAM

PROGRAM
MEMORY

I

Pc INSTR

DATA

GENERAL FLOW

MPU

m

ACCA

m

RAM

MPU

m RAM

ADOR

*

DATA

PROGRAM
MEMORY II PROGRAM

MEMORY

‘C=’oo’w‘C’*
EXAMPLE

MPU

G

ACCA

m

RAM

EXAMPLE

1 Address Mode Cycle VMA ?!i<,,l>;
and 1nstructions Cycles # Line Addrass Bus Data Bus.\.!),,,1?,’

.f’’’*,..,

ADC EOR 1 1 Op Code Address .es”’$% ‘“~\ 1 Op Code
ADD LDA
AND ORA 2

2 1 Op Code Address+ 1 ‘~+?<q,~’~ 1 Operand Data

BIT SBC
‘~!’$.,,..“‘~!-’::...,,. , .,,,,,

~..,?t.,,
CMP SUB .Q,.

CPX 1 1 Op Code A@dress *’” 1 Op Code
LDS

,,,:,..:..i.~,

LDX
3 2 1 OP CodaL$dd~ss + 1 1 Operand Data (High Order Byte)

3 1 OD C&&hress + 2 1 Oparand Data (Low Order Byte)

[

Address Mode R/~
and Instructions Cycles Addres Bus Line Data Bus

~~, !.~:t:~>.,....., ..~~
,a.\’. \,. ‘*., ,.

ADC EOR Op Code Address 1 Op Code

ADD LDA
AND ORA

Op Code Address+ 1 1 Address of Operand

BIT SBC Address of Operand 1 Operand Data

CMP SUB ,,

CPX Op Code Address 1 Op Code
LDS
LDX

Op Code Address + 1 1 Address of Operand

Address of Operand 1 Operand Data (High Order Byte)

4 1 Operand Address + 1 1 Operand Data (Low Order Byte)

1 1 Op Code Address 1 Op Code

Op Code Address + 1 1 Destination Address

3 0 Destination Address 1 irrelevant Data (Note 1}

4 1 Destination Address o Data from Accumulator

STS 1 1 Op Code Address 1 Op Code
STX 2 1 OP Code Address+ 1 1 Address of Operand

5 3 0 Address of Operand 1 Irrelevant Data (Note 1 )

4 1 Address of Operand o Register Oata (High Order Byte)

5 1 Address of Operand + 1 0 Register Data (Low Ordar BVte)

,., ,.. .
Note 1. If device which is address during this cvcle uses VMA, then the Data BUS WIII go to ?ne nigh impeaance tnree-s~aIe conolrlon.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

B MOTOROLA Semiconductor Products Inc.
27



I

FIGURE 31 – EXTENDED ADDRESSING MODE
MPU MPu

R

%

RAM

DATA

PROGRAM
MEMORY

RAM I

---

..

ADOR

Pc

ADDR = 300

PROGRAM
MEMORY IwINSTR

ADDR

@

LDA B

300

PC = 5006

5009MADDR “

AODR > 256

GENERAL FLOW EXAMPLE

TABLE 9 – EXTENDED MODE CYCLE-BY-CYCLE

Address Mode Cycle VMA

and Instructions Cycles = Line

6

9

STS
STX

1
2

3

4

5

6

1

2

3

4

5

6

7

8

9

OP Code

Address of Operand (High Order Byte)

Address of Operand (Low Order Byte)

Irrelevant Data (Note 1 )

Operand Data (High Order Byte)

Operand Data (Low Order Byte)

Op CodeJSR

Address of Subroutine (High Order Byte)

Address of Subroutine ( LOW Order BVte)

3P Code of Next Instruction

L
1
0
0
1
1
1
1

Return Address (Low Order Bvte)

Return Address (High Order BVte)

Irrelevant Oata (Note 1 )

Irrelevant Data (Note 1 )

Address of Subroutine (Low Order Bvte)

Op Code

Jump Address (High Order Bvte)

Jump Address ( LOW Order Bvte)

3 Op Code Address + 1 II

OP Code Address + 2 1

OP Code Address 1 Op Code

Address of Operand (High Order BVte)

Address of Operand (Low Order Bvte)

Operand Dataw Op Code

Address of Operand (High Order BVte)

Address of Operand (LOW Order BVte)

Operand Data (High Order BVte)

Operand Data (LOW Order Bvte)

OP Code Address + 2

I
1

Address of Operand 1

Address of Operand + 1 1

OP Code Address 1 Op Code

Destination Address (High Order Bvte)

Destination Address ( Low Order Bvte)

Irrelevant Oata (Note 1 )

Data from Accumulator

OP Code

Op Code Address + 1 1

Op Code Address + 2 1

Operand Destination Address 1

Operand Destination Address o

Op Code Address 1ASL LSR
ASR NEG
CLR ROL

Op Code Address + 1 II Address of Operand (High Order Bvte)

Address of Operand (Low Order Bvte)

Current Operand Data

Irrelevant Data (Note 1 )

New Operand Data (Note 2)

Op Code Address + 2

I
1

Address of Operand 1

COM ROR
DEC TST
INC

6

Address of Operand 1

Address of Operand o

~te 1. It device which IS addressed during this cvcle uses VMA, then the Data Bus will go to the high impedance three-state condition,

Depending on bus capacitance, data from the previous cycle mav ba retatned on the Data Bus.

Note 2. For TST, VMA = O and Operand data does not change,

@
MOTOROLA Semiconductor Products Inc.

28



FIGURE 32 – RELATIVE ADDRESSING MODE

MPU

RAM

1

PrOaram i
MeGory

Pc Instr.

Offset

(PC + 2) Next Instr.

Pc

Pc

t

ADDR = INOX

+ OFFSET

MPU

a~AM

sProgram
Memorv

5008 BEQ

15

5010 Next Instr.

MPu

...3 . . .
-~

1,’ ..,. OFFSET< 255

,,. ...,.y#...?k,\*a\. . TABLE 10 – RELATIVE MODE CYCLE-BY-CYCLE OPERATION
..,$~~,>?.+..

Address Mod.@x,.,.j:, ‘ cycle VMA RIG
and Instruc,$~~ “r’’’*’f Cycles + Line Address Bus Line Data Bus

1
{t ‘:.>,.$’{,,,. i.>~:+,,\*>: .+

BCC BH#~’B~b’ 1 1 OP Code Address 1 Op Code

BCS ,@&~@>>@~L 2
BE Q $~@\$~<. BRA 4

1 Op Code Address + 1 1 Branch Offset

BG5 &&T ;;: 3 0 Op Code Address t 2 1 Irrelevant Data (Note 1 )

B&?$~’*RM I‘t.,A:”~- 4 0 Branch Address 1 Irrelevant Data (Note 1 )

BS ~: 1 1 OP Code Address 1 Op Code

2 1 Op Code Address+ 1 1 Branch Offset

3 0 Return Address of Main Program 1 Irrelevant Data (Note 1 )

8
4 1 Stack Pointer o Return Address (Low Order Byte)

5 1 Stack Pointer – 1 0 Return Address (High Order Byte)

6 0 Stack Pointer – 2 1 Irrelevant Data (Note 1 )

7 0 Return Address of Main Program 1 Irrelevant Data (Note 1 )

8 0 Subroutine Address 1 Irrelevant Data (Note 1 )
. . ..-. . . . . -., . . . ,, .,. ,., . . . . . . .- —J.. ,-—

Note 1. If device which is addressed during this cycle uses VMA, tnen tne UaTa Bus WIII go TO tne nlgn !mpeaance ~nree-staTe conut~!un.
Depending on bus capacitance, data from the previous cycle may be retained on the Oata Bus.

@
MOTOROLA Semiconductor Products Inc.

29

—



I

TABLE 11 – INDEXEO MOOE CYCLE-BY-CYCLE

Address Mode Cycle VMA R 1~
and Instructions Cycles # Line Address Bus Line Deta Bus

I
INDEXED

—

JMP

ADC EOR
ADD LDA
AND ORA
BIT SBC
CMP SUB

CPX
LDS
LDX

STA

ASL LSR
ASR NEG
CLR ROL
COM ROR
DEC TST
INC

;TS
3TX

4

5

6

6

?

T
2

3

4

T

2

3

4

5

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

7

T

2

3$$
‘q;

;@p

6

7

T

2

3

4

5

6

7

8—

1

1

0

0
T
1

0

0
1

Op Code Address

OP Code Address + 1

Index Register

Index Register Plus Offset (w/o Carry)

Op Code Address

Op Code Address + 1

Index Register

Index Register PI us Offset (w/o Carry)

Index Register Plus Offset

Op Code Address

Op Code Address+ 1

Index Register

Index Register Plus Offset (w/o Carry)

Index Register Plus Offset

Index Register Plus Offset + 1

Op Code Address

Op Code Address + 1
,,,,.7>.,,

,,+y:>,
Index Register B:#

,$<i?!’.”.,,
Index Register Plus Offset (w/o *~/Y)

Index Register Plus Offset ,,:~j, ‘k

Index Register Plus Off@F?:~
$.\\$&h

Op Code Address
kTi\$ $:~t

‘i:%,>.:..,>{:\“,~b-

Op Code Address’~~%?.?#~
~~.,~;,\

Index Register , ‘.:

Index ReQ&er Pyus Offset (w/o Carry),...,,,,,
Index ~{gf$~~{ Plus Offset

I nde~l.%~,~ter PI us Offset
.- ‘.~$+t

t#d,* R*gister Plus Offset
.;$:,>~:.,!

?n.S,pt:+f“
yt{\,
?
‘&p Code Address

Op Code Address+ 1

Index Register

Index Register Plus Offset (w/o Carry)

Index Register Plus Offset

Index Register Plus Offset

Index Resister Plus Offset + 1

Op Code Address

Op Code Address+ 1

Index Register

Stack Pointer

Stack Pointer – 1

Stack Pointer – 2

Index Register

Index Register Plus Offset (w/o Carry)

1

1

1

1

1

0
0
1

1

1

0
0
1

1

1

lg{&,~@van#Data (Note 1)

~~y Data (High Order Byte)

~~~$rand Data (Low Order Byte)
,’
Op Code

Offset

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Irrelevant Oata (Note 1)

Operand Data

Op Code

Offset

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Current Operand Data

Irrelevant Data (Note 1)

New Operand Data (Note 2)

Op Code

Offset

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Operand Data (High Order Byte)

Operand Data (Low Order Byte)

Op Code

Offset

Irrelevant Data (Note 1)

Return Address (Low Order Byte)

Return Address (High Order Byte)

Irrelevant Data (Note 1)

Irrelevant Data (Note 1)

Irrelevant Oata (Note 1)

Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Oepending on bus capacitance, data from the previous cycle may be retained on the Oata Bus.

Note 2. For TST, VMA = O and Operand data does not change.

@
MOTOROLA Semiconductor Products Inc.

30

PACKAGE DIMENSIONS

CASE 711-W
(PLASTIC)

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any Iiabilityarising
out of the application or usa of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

@
MOTOROLA Semiconductor Products Inc.

31

I

@
M070ROLA Semiconductor Products Inc.

3501 ED BLUESTEIN BLVD AUSTIN, TEXAS 78721 ● A SUBSIDIARY OF MOTOROLA lNC —

—

*,1,,,-, PR,m,, ,. “,. ,-84 1.,,,,0 LI,,m .20206 1s,000 ,,,,7,12

—-. — ——.——— —. —-. —. ———-

