
Synchronization of Concurrent Processes

Trifon Ruskov
ruskov@tu-varna.acad.bg

Technical University of Varna - Bulgaria

Trifon Ruskov Technical University of Varna 2

Work of a computer system

Main goal: Efficient work of a computer system
What is “efficient work”

CPU is waiting for the end of I/O operations

Two asynchronous moving systems

If V1 V2 , then crash
If the system is “a computer system”, then non efficient work waiting

≠

≡

CPU I/O
processorMemory

V1

Buffers

V2

Trifon Ruskov Technical University of Varna 3

Round buffer

CPU
I/O

system

array: Buf[0], Buf[1], … , Buf[n-1]

After Buf[I] follows Buf[(I+1) mod n]

Typical computation process (program):

…
GetBuf; Receive a full buffer
Compute(Buf[current]);
ReleaseBuf; Free the buffer
…

Trifon Ruskov Technical University of Varna 4

Round buffer (cont.)

in GetBuf procedure:

current := nextget;
nextget := (nextget+1)mod5;

G – full buffer (advance buffer)
R – empty buffer

1

4

G

G

G

R

R

nextio

nextget

2

3

0

4

G

G

C

R

R

nextio

current

2

3

0nextget

1

Trifon Ruskov Technical University of Varna 5

Round buffer (cont.)

Operation Read(Buf[nextio]) is asynchronous

after Read …

nextio := (nextio + 1) mod 5;

ReleaseBuf procedure:

Buff[current] is marked as free (empty) - R

4

G

G

R

G

R
nextio

1

2

3

0
nextget

Trifon Ruskov Technical University of Varna 6

Round Buffer Implementation

CP – Computational program
IOP – Input/Output program

Co-routines

CP IOP

Resume IOP

Resume IOP

Resume CP

Resume CP

tCP tIOP

Resume continue execution of …≡

Trifon Ruskov Technical University of Varna 7

Round Buffer Implementation (cont.)

n – total number of buffers
r – R-type buffers (empty)
ch – channel (I/O processor)
in CP:
procedure GetBuf;
begin
repeat
if not busy[ch] then resumeIOP;

until not (r = n); Continue only if there is a full buffer
current := nextget;
nextget := (nextget + 1) mod n;

end;
procedure ReleaseBuf;
begin
r := r + 1;
if not busy[ch] then resumeIOP;

end;

Trifon Ruskov Technical University of Varna 8

Round Buffer Implementation (cont.)

in IOP:

repeat
while r = 0 then resumeCP;
Read(ch, Buf[nextio]);
resumeCP;
nextio := (nextio + 1) mod n;
r := r – 1;

until forever;

Initialization:
nextio := 0;

nextget := 0;

What is the value of n ?

Trifon Ruskov Technical University of Varna 9

The Problem: I/O System is Waiting

Everywhere in CP program:

if not busy[ch] then resumeIOP;

But how often ?

Solution:

Signal from I/O system interrupt

What is the meaning of the interrupt from an I/O device (system) ?

≡

Trifon Ruskov Technical University of Varna 10

I/O Channel Interrupts CPU

procedure GetBuf;
begin

while (r = n) do ; All buffers are empty

current := nextget;
nextget := (nextget + 1) mod n;

end;

procedure ReleaseBuf;
begin

r := r + 1;
if not busy[ch] then Read(ch, Buf[nextio]);

end;

Trifon Ruskov Technical University of Varna 11

Interrupt Procedure

procedure IR;
begin
SaveCurrentState;
nextio := (nextio + 1) mod n;
r := r – 1;
if r <> 0 then Read(ch, Buf[nextio]);
RestoreState;

end;
procedure Init;

begin
r := n;
nextget := 0;

nextio := 0;
Read(ch, Buf[nextio]);

end;

Trifon Ruskov Technical University of Varna 12

The Problem:

When is the interrupt accepted ?
A closer look at the previous program

in ReleaseBuf:
r := r + 1;

in IR:
r := r – 1;

interrupt

r:=r+1 r:=r-1

LOAD r
(CPU Register=2)

SUB 1
(Register=1)

STOR r

save state LOAD r
(CPU Register=2)

ADD 1
(Register=3)

(var r=3)
STOR r restore state

(var r=1)

r = 2

r = 3

But r must be 2 !

Trifon Ruskov Technical University of Varna 13

Processes

Informal definition:
A sequential process is the activity, resulting from the execution of a
program with its data by a sequential processor (CPU).

Conceptually:
Each process has its own processor and program stored in physical
memory.

In reality:
Two different processes may share the same processor or the same
program.

Therefore:
A process is not equivalent to a program and is not equivalent to a
processor (CPU) !

Trifon Ruskov Technical University of Varna 14

Processes (cont.)

Running every process is described by a sequence of vectors
S0, S1, … Si, … , and every vector contains at least the program
counter and CPU registers.

The kernel creates the illusion of a separate CPU for each
running process. The kernel may also provide separate storage
(virtual memory) for each process.

More formal definition:
A process is ordered triple <CPU, program, data> in
execution.

Trifon Ruskov Technical University of Varna 15

Process State Diagram

Running

Blocked Ready

What is the number of processes in every state?
Max number? Min number?

Null process for easier scheduling implementation.

Trifon Ruskov Technical University of Varna 16

Critical Section (CS)

This part of a process program in which access to common resources
(common data in particular) is made.

Assumptions about the system:
1. Writing into and reading from the common memory are both
indivisible operations.
2. Critical sections may not have priorities associated with them.
3. The relative speeds of the processes are unknown.
4. A program may halt only outside its CS.

Trifon Ruskov Technical University of Varna 17

Software Solution (Dijkstra, 1968)

Our aim:
Prevent P1 and P2 from entering their CSs at the same time
(mutual exclusion)

Three possible types of blocking must be avoided:
1. A process running outside its CS can not prevent another
process from entering its CS.
2. It must not be possible for one of the processes to repeatedly
enter its CS while the other process never gets a chance.
3. The processes about to enter their CSs can not, by entering
infinite waiting loops.

Trifon Ruskov Technical University of Varna 18

Software Solution (Dijkstra, 1968) (cont.)

parbegin
P1: repeat

CS1;
program1;

until forever;
P2: repeat

CS2;
program2;

until forever;
parend;

CS1

Program1

Process P1

CS2

Program2

Process P2

Trifon Ruskov Technical University of Varna 19

Incorrect Solution

I. var turn: integer := 2;
parbegin
P1: repeat

while turn = 2 do ; { wait loop }
CS1;
turn := 2;
program1;
until forever;

P2: repeat
while turn = 1 do ; { wait loop }
CS2;
turn := 1;
program2;
until forever;

parend;

Violating requirement 1

Trifon Ruskov Technical University of Varna 20

Incorrect Solution (cont.)

II.var C1, C2: boolean := true;
parbegin

P1: repeat
A1: C1 := false;
B1: while not C1 do ;

CS1;
C1 := false;
program1;

until forever;
P2: { analogous to P1 }

parend;

Mutual blocking

Trifon Ruskov Technical University of Varna 21

Incorrect Solution (cont.)

III.var C1, C2: boolean := true;
parbegin
P1: repeat

C1 := false;
if not C2 then C1 := true;
else begin

CS1;
C1 := true;
program1;

end;
until forever;

P2: { analogous to P1 }

parend;

2nd and 3rd type of blocking

Trifon Ruskov Technical University of Varna 22

The First Complete Solution of the Critical Region
Problem (T.Dekker, 1966)

var C1, C2: boolean := true;
turn: integer := 1;

parbegin
P1: repeat

C1 := false;
while not C2 do

if turn = 2 then
begin

C1 := true;
while turn = 2 do ;
C1 := false;

end;
CS1;
turn := 2;
C1 := true;
program1;

until false;
P2: . . .

parend;

Trifon Ruskov Technical University of Varna 23

Peterson (1981). A Simple and Elegant Algorithm

var C1, C2: boolean := true;
turn: integer;

parbegin
P1: repeat

C1 := false;
turn := 1;
while not C2 and turn = 2 do ;
CS1;
C1 := true;
program1;

until false;
P2: . . .

parend;

Trifon Ruskov Technical University of Varna 24

Why do we need another solution ?

Problems with the Dekker & Peterson algorithms:

1. The solutions are too complex and hard for more that 2
processes.

2. During the time when one process is in its CS, another is
consuming CPU time.

Trifon Ruskov Technical University of Varna 25

Semaphores. (Dijkstra, 1968)

Semaphore - a nonnegative integer variable s on which only two
operations are defined - P and V.

1. P(s): tries to execute s := s - 1
if possible then the process continues
if not possible (s = 0), the process waits until s > 0

2. V(s): executes s := s + 1
if there is a process waiting to complete its P(s) operation, it wakes
up and continues execution

The P(s) and V(s) operations are indivisible.

Trifon Ruskov Technical University of Varna 26

Mutual Exclusion. A Solution for N Processes

var mutex: semaphore := 1;
parbegin

P1: repeat ... until forever;
...

Pi: repeat
P(mutex);
CSi;
V(mutex);
program_i;

until forever;
...

Pn: repeat ... until forever;
parend;

• General semaphores
• Binary semaphores

Trifon Ruskov Technical University of Varna 27

Producer-Consumer Problem
var empty: semaphore := n; { number of empty buffers}

full: semaphore := 0; { number of full buffers }
me: semaphore := 1; { mutual exclusion }

parbegin
producer: repeat

produce_data;
P(empty);
P(me);
add_to_buffer;
V(me);
V(full)

until forever;
consumer: repeat

P(full);
P(me);
take_from_buffer;
P(me);
P(empty);
process_data;

until forever;
parend;

Trifon Ruskov Technical University of Varna 28

Implementation of Semaphore Operations

A problem:
It is hard to provide directly hardware implementations of P and V as CPU
instructions.

TS(x) instruction

function TS(x: boolean): boolean;
begin

TS := x;
x := false;

end;

P(s): while TS(s) do ;
V(s): s := true;

A problem: “Busy wait”

Trifon Ruskov Technical University of Varna 29

Avoiding the Busy Wait

P(s): DisableInterrupts;
P(mutex);
s := s - 1;
if s < 0 then

begin
Block_Process_Invoking_P_into_L;
q := Remove_From_RQ;
V(mutex);
Transfer_to_q_with_Interrupts_Enabled;

end
else begin

V(mutex);
EnableInterrupts;

end;

Trifon Ruskov Technical University of Varna 30

Avoiding the Busy Wait (cont.)

V(s): DisableInterrupts;
P(mutex);
s := s + 1;
if s <= 0 then

begin
q := Remove_From_L;
if there_are_free_CPUs

then Start_q
else Add_q_to_RQ;

end;
V(mutex);
EnableInterrupts;

A conventional instruction can be used if there is no TS in the CPU
instruction set

Trifon Ruskov Technical University of Varna 31

TS(x) on Multiprocessor Systems

read

CPU1

t
TS

CPU2

t
TS

writemodify

read modify write

Solutions:
1. Lock memory during TS execution
2. Lock memory with a special prefix instruction

Trifon Ruskov Technical University of Varna 32

Monitors
(Brinch Hansen, 1973. Hoare, 1974)

The idea:
Based on the principles of abstract data types.

Monitor:
1. A set of common resources (variables) and operations (procedures)
on them.
2. Procedures are mutually exclusive.
3. Provides a special type of variables called condition.
4. Only two operations (wait and signal) operate on conditions.

Trifon Ruskov Technical University of Varna 33

Monitor Operations

wait(condition X)
Executing process is suspended (blocked) and placed in a queue

associated with condition X, monitor becomes “open”
signal(condition X)

One of the processes (if any) waiting on condition X is activated and
continues to work in the monitor

waiting queues

Trifon Ruskov Technical University of Varna 34

Bounded Buffer

type buffer: monitor;
var Buf: array[0..n-1] of char;

nextin, nextout, count: integer;
notempty, notfull: condition;

procedure Putdata(data: char);
begin

if count = n then wait(notfull);
Buf[nextin] := data;
nextin := (nextin + 1) mod n;
count := count + 1;
signal(notempty);

end;

Trifon Ruskov Technical University of Varna 35

Bounded Buffer (cont.)

procedure Getdata(var data: char);
begin

if count = 0 then wait(notempty);
data := Buf[nextout];
nextout := (nextout + 1) mod n;
count := count - 1;
signal(notfull);

end;

begin
count := nextput := nextin := 0;

end;

Trifon Ruskov Technical University of Varna 36

Bounded Buffer (cont.)

var MyBuf: buffer;

produceri

repeat
produce_data(data);
MyBuf.Putdata(data);

until forever;

consumerj

repeat
MyBuf.Getdata(data);
consume_data(data);

until forever;

Trifon Ruskov Technical University of Varna 37

Diagram of Process States in Monitor

Blocked

Blocked

Running

Readyenter

busy

free

signal
wait

exit

Trifon Ruskov Technical University of Varna 38

Problems with Monitors

1. After signal(condition) two processes are inside monitor?
2. After a monitor call, if the monitor is busy, the calling process is
unconditionally blocked.
3. The problem of nested monitor calls.

Monitor 1 Monitor 2

nested
monitor call

Trifon Ruskov Technical University of Varna 39

Rendez-vous
(Hoare and Hansen, 1978)

The idea:
Considers communication and synchronization between processes
as inseparable activities.

The model:
Process A and process B
A - transmits data
B - receives data

A B

Rendez-vous

Trifon Ruskov Technical University of Varna 40

Symmetric Rendez-vous
(Hoare’s model)

Implemented in the Occam programming language

process A
var x: data;
begin

. . .
B!x;
. . .

end;

process B
var y: data;
begin

. . .
A?y;
. . .

end;

Disadvantages:
Every process must know the name of the other process with which it
communicates.
For example: we can not build a program library containing processes.

Trifon Ruskov Technical University of Varna 41

Asymmetric Rendez-vous

Implemented in the Ada programming language

process A
var x: data;
begin

. . .
B.send(x);
. . .

end;

process B
var y: data;
begin

. . .
accept send ({var}d:data);

y := d;
end;
. . .

end;

During the execution of accept both processes are in rendez-vous.
Operator accept is executed as a critical section.

Trifon Ruskov Technical University of Varna 42

Asymmetric Rendez-vous (cont.)

Advantages:
1. The body of the accept operator can be executed from process A
as well as from process B.
2. In asymmetric rendez-vous data transmission can be made in both
directions.

Disadvantages:
Model is too simple for realistic tasks.

Trifon Ruskov Technical University of Varna 43

Non-deterministic choice of accept

process Guarded_var;
var shared_var: data;
begin

repeat;
select

accept read(var x: data);
x := shared_var;

end;
or

accept write(y: data);
shared_var := y;

end;
end select;

until forever;
end Guarded_var;

Trifon Ruskov Technical University of Varna 44

Using Rendez-vous for the implementation of mutual exclusion

P1 shared resource

monitor

P2

The passive construct monitor is replaced with the active construct process

P1 shared resource P2

P3

rendez-vous rendez-vous

Trifon Ruskov Technical University of Varna 45

Rendez-vous disadvantages

In a system using rendez-vous, the number of
processes is greater than the number of processes in a
system using monitors.

This leads to greater consumption of CPU time for
process switching.

Trifon Ruskov Technical University of Varna 46

Modula-2

Concurrent programming in Modula-2 is based on the model of co-
routines.

A co-routine is not declared, instead it is created from a procedure.

Co-routine creation:
PROCEDURE NEWPROCESS(P:PROC; A:ADDRESS;

S:CARDINAL;VAR P1: ADDRESS);
parameters:

• P - procedure from which the new co-routine will be created
• A, S - the address and size of the co-routine workspace
• P1 - holds a new co-routine reference

Co-routine transfer:
PROCEDURE TRANSFER(VAR P1, P2: ADDRESS);

TRANSFER suspends the current co-routine (the one that called
TRANSFER), stores a reference to it in P1 and resumes the co-routine
that P2 identifies.

Trifon Ruskov Technical University of Varna 47

Interrupt Handling

PROCEDURE IOTRANSFER(VAR P1, P2: ADDRESS; I: CARDINAL);

parameters:
P1, P2 - references to co-routines
I - interrupt vector number

A call to IOTRANSFER suspends the current co-routine (the interrupt
handler), stores a reference to this co-routine in P1 and allows the co-routine
referenced by P2 to resume execution. In addition P1 is “installed” as the
handler for the interrupt, specified by I.

When this interrupt next occurs, the following actions take place:
1. Current co-routine is suspended.
2. A reference to this co-routine is stored in P2.
3. The co-routine referenced by P1 (the interrupt handler) resumes
execution

The “interrupt” is identical to TRANSFER.

Trifon Ruskov Technical University of Varna 48

Example of Interrupt Handling

PROCEDURE InterruptHandler;
(* declarations of local variables *)
BEGIN
(* initialize local variables *)
LOOP
IOTRANSFER(handler, mainProcess, interuptvector);
(* respond to interrupt *)

END;
END InterruptHandler;

Can preemptive process scheduling be implemented using the non-
preemptive co-routines of Modula-2 ?

	Synchronization of Concurrent Processes
	Work of a computer system
	Round buffer
	Round buffer (cont.)
	Round buffer (cont.)
	Round Buffer Implementation
	Round Buffer Implementation (cont.)
	Round Buffer Implementation (cont.)
	The Problem: I/O System is Waiting
	I/O Channel Interrupts CPU
	Interrupt Procedure
	The Problem:
	Processes
	Processes (cont.)
	Process State Diagram
	Critical Section (CS)
	Software Solution (Dijkstra, 1968)
	Software Solution (Dijkstra, 1968) (cont.)
	Incorrect Solution
	Incorrect Solution (cont.)
	Incorrect Solution (cont.)
	The First Complete Solution of the Critical Region Problem (T.Dekker, 1966)
	Peterson (1981). A Simple and Elegant Algorithm
	Why do we need another solution ?
	Semaphores. (Dijkstra, 1968)
	Mutual Exclusion. A Solution for N Processes
	Producer-Consumer Problem
	Implementation of Semaphore Operations
	Avoiding the Busy Wait
	Avoiding the Busy Wait (cont.)
	TS(x) on Multiprocessor Systems
	Monitors(Brinch Hansen, 1973. Hoare, 1974)
	Monitor Operations
	Bounded Buffer
	Bounded Buffer (cont.)
	Bounded Buffer (cont.)
	Diagram of Process States in Monitor
	Problems with Monitors
	Rendez-vous(Hoare and Hansen, 1978)
	Symmetric Rendez-vous(Hoare’s model)
	Asymmetric Rendez-vous
	Asymmetric Rendez-vous (cont.)
	Non-deterministic choice of accept
	Using Rendez-vous for the implementation of mutual exclusion
	Rendez-vous disadvantages
	Modula-2
	Interrupt Handling
	Example of Interrupt Handling

